
Analog Circuit Design
Harald Pretl Michael Koefinger

2024-09-14

Table of contents

1 Introduction 4
1.1 IHP’s SG13G2 130nm CMOS Technology . 4
1.2 Schematic Entry Using Xschem . 5
1.3 Circuit Simulation Using ngspice . 5
1.4 Integrated IC Design Environment (IIC-OSIC-TOOLS) 5

2 First Steps 6
2.1 The Metal-Oxide-Semiconductor Field-Effect-Transistor (MOSFET) 6

2.1.1 Large-Signal MOSFET Model . 9
2.1.2 Small-Signal MOSFET Model . 10

2.2 Conclusion . 12

3 Transistor Sizing Using gm/ID Methodology 12
3.1 MOSFET Characterization Testbench . 13
3.2 NMOS Characterization . 15
3.3 PMOS Characterization . 22

4 First Circuit: MOSFET Diode 29
4.1 MOSFET Diode Sizing . 30
4.2 MOSFET Diode Large-Signal Behaviour . 31
4.3 MOSFET Diode Small-Signal Analysis . 32
4.4 MOSFET Diode Stability Analysis . 33
4.5 MOSFET Diode Noise Calculation . 35
4.6 Conclusion . 38

5 Current Mirror 38

6 Differential Pair 39
6.1 Differential Operation of the Diffpair . 40
6.2 Common-Mode Operation of the Diffpair . 41

1

7 A Basic 5-Transistor OTA 42
7.1 Voltage Buffer with OTA . 44
7.2 Large-Signal Analysis of the OTA . 45
7.3 Small-Signal Analysis of the OTA . 45

7.3.1 OTA Small-Signal Transfer Function 46
7.3.2 OTA Noise . 49

7.4 5T-OTA Sizing . 52

8 Sizing for Basic 5T-OTA 52
8.1 5T-OTA Simulation . 57
8.2 5T-OTA Simulation versus PVT . 57

9 CACE Summary for ota-5t 58
9.1 Plots . 59
9.2 gain_vs_temp . 59
9.3 gain_vs_vin . 60
9.4 gain_vs_vdd . 61
9.5 gain_vs_corner . 62
9.6 bw_vs_temp . 63
9.7 bw_vs_vin . 64
9.8 bw_vs_vdd . 65
9.9 bw_vs_corner . 66
9.10 noise_vs_temp . 67
9.11 noise_vs_vin . 68
9.12 noise_vs_vdd . 69
9.13 noise_vs_corner . 70
9.14 settling_vs_temp . 71
9.15 settling_vs_vin . 72
9.16 settling_vs_vdd . 73
9.17 settling_vs_corner . 74

9.17.1 PVT Simulation Analysis . 74

10 Cascode Stage 74
10.1 Cascode Output Impedance . 77
10.2 Cascode Input Impedance . 79

11 Improved OTA 80
11.1 Sizing the Improved OTA . 82

12 Sizing for Basic (Improved) OTA 82
12.1 Designing the Improved OTA . 89

12.1.1 Discussion of the OTA Design . 89
12.2 Simulation of Improved OTA . 91
12.3 Corner Simulation of Improved OTA . 93

13 CACE Summary for ota-improved 93
13.1 Plots . 95

2

13.2 gain_vs_temp . 95
13.3 gain_vs_vin . 97
13.4 gain_vs_vdd . 99
13.5 gain_vs_corner . 101
13.6 bw_vs_temp . 103
13.7 bw_vs_vin . 105
13.8 bw_vs_vdd . 107
13.9 bw_vs_corner . 109
13.10noise_vs_temp . 111
13.11noise_vs_vin . 113
13.12noise_vs_vdd . 115
13.13noise_vs_corner . 117
13.14settling_vs_temp . 119
13.15settling_vs_vin . 121
13.16settling_vs_vdd . 123
13.17settling_vs_corner . 125

14 A Fully-Differential OTA 126

15 Biasing the OTA 126

16 An RC-OPAMP Filter 126

17 Summary & Conclusion 126

18 Appendix: Middlebrook’s Method 127

19 Appendix: Miller’s Theorem 128

20 Appendix: 5T-OTA Small-Signal Output Impedance 129
20.1 Open-Loop Configuration . 130
20.2 Closed-Loop Configuration . 131

21 Appendix: ngspice Cheatsheet 132
21.0.1 Commands . 133
21.0.2 Options . 134
21.0.3 Convergence Helper . 134

22 Appendix: Xschem Cheatsheet 134

23 Appendix: Circuit Designer’s Etiquette 135

24 Circuit Designer’s Etiquette 135
24.1 Prolog . 135
24.2 Pins . 136
24.3 Schematics . 136
24.4 Symbols . 138
24.5 Design Robustness . 138

3

24.6 Rules for Good Mixed-Signal and RF Circuits 139
24.7 VHDL/Verilog Coding Guide . 139
24.8 Further Reading . 140

1 Introduction

This is the material for an intermediate-level MOSFET circuit design course, held at JKU
under course number 336.009 (“KV Analoge Schaltungstechnik”).

The course makes heavy use of circuit simulation, using Xschem for schematic entry and
ngspice for simulation. The 130nm CMOS technology SG13G2 from IHP Microelectronics
is used.

Tools and PDK are integrated in the IIC-OSIC-TOOLS Docker image, which will be used
during the coursework.

Important

All course material is made publicly available on GitHub and shared under the Apache-
2.0 license.

1.1 IHP’s SG13G2 130nm CMOS Technology

SG13G2 is the name of a 130nm CMOS technology (strictly speaking BiCMOS) from IHP
Microelectronics. It features low-voltage (thin-oxide) core MOSFET, high-voltage (thick-
oxide) I/O MOSFET, various types of linear resistors, and 7 layers of Aluminium metalliza-
tion (5 thin plus 2 thick metal layers). This PDK is open-source, and the complete process
specification can be found at SG13G2 process specification. While we will not do layouts
in this course, the layout rules can be found at SG13G2 layout rules.

For our circuit design, the most important parameters of the available devices are summa-
rized in the following table:

Table 1: IHP SG13G2 devices

Device Name Specification
Low-voltage (LV)
NMOS

sg13_lv_nmos operating voltage (nom.) 𝑉DD = 1.5 V,
𝐿min = 0.13 𝜇m, 𝑉th ≈ 0.5 V; triple-well available

Low-voltage (LV)
PMOS

sg13_lv_pmos operating voltage (nom.) 𝑉DD = 1.5 V,
𝐿min = 0.13 𝜇m, 𝑉th ≈ −0.47 V

High-voltage (HV)
NMOS

sg13_hv_nmos operating voltage (nom.) 𝑉DD = 3.3 V,
𝐿min = 0.45 𝜇m, 𝑉th ≈ 0.7 V; triple-well available

High-voltage (HV)
PMOS

sg13_hv_pmos operating voltage (nom.) 𝑉DD = 3.3 V,
𝐿min = 0.45 𝜇m, 𝑉th ≈ −0.65 V

Silicided poly resistor rsil 𝑅□ = 7 Ω ± 10%, TC1 = 3100 ppm/K

4

https://github.com/IHP-GmbH/IHP-Open-PDK/blob/main/ihp-sg13g2/libs.doc/doc/SG13G2_os_process_spec.pdf
https://github.com/IHP-GmbH/IHP-Open-PDK/blob/main/ihp-sg13g2/libs.doc/doc/SG13G2_os_layout_rules.pdf

Device Name Specification
Poly resistor rppd 𝑅□ = 260 Ω ± 10%, TC1 = 170 ppm/K
Poly resistor high rhigh 𝑅□ = 1360 Ω ± 15%, TC1 = −2300 ppm/K
MIM capacitor cap_cmim 𝐶′ = 1.5 fF/𝜇m2 ± 10%, VC1 = −26ppm/V,

TC1 = 3.6ppm/K, breakdown voltage > 15 V
MOM capacitor n/a The metal stack is well-suited for MOM capacitors

due to 5 thin metal layers, but no primitive
capacitor device is available at this point.

1.2 Schematic Entry Using Xschem

Xschem is an open-source schematic entry tool with emphasis on integrated circuits. For
up-to-date information of the many features of Xschem and the basic operation of it please
look at the available online documentation. Usage of Xschem will be learned with the first
few basic examples, essentially using a single MOSFET. The usage model of Xschem is
that the schematic is hierarchically drawn, and the simulation and evaluation statements
are contained in the schematics. Further, Xschem offers embedded graphing, which we will
mostly use.

1.3 Circuit Simulation Using ngspice

ngspice is an open-source circuit simulator with SPICE dependency (Nagel 1975). Besides
the usual simulated types like op (operating point), dc (dc sweeps), tran (time-domain), or
ac (small-signal frquency sweeps), ngspice offers a script-like control interface, where many
different simulation controls and result evaluations can be done. For detailed information
please refer to the latest online manual.

1.4 Integrated IC Design Environment (IIC-OSIC-TOOLS)

In order to make use of the various required components (tools like Xschem and ngspice,
PDKs like SG13G2) easier, we will use the IIC-OSIC-TOOLS. This is a pre-compiled
Docker image which allows to do circuit design on a virtual machine on virtually any type
of computing equipment (personal PC, Raspberry Pi, cloud server) on various operating
systems (Windows, macOS, Linux). For further information like installed tools, how to
setup a VM, etc. please look at IIC-OSIC-TOOLS GitHub page.

Preparation

Please make sure to receive information about your personal VM access ahead of the
course start.

Experienced users can install this image on their personal computer, for JKU students the
IIC will host a VM on our compute cluster and provide personal login credentials.

5

https://xschem.sourceforge.io/stefan/xschem_man/xschem_man.html
https://ngspice.sourceforge.io/docs/ngspice-43-manual.pdf
https://github.com/iic-jku/IIC-OSIC-TOOLS

Linux

In this course, we assume that students have a basic knowledge of Linux and how to
operate it using the terminal. If you are not yet familiar with Linux (which is basically
a must when doing integrated circuit design as many tools are only available on Linux),
then please check out a Linux introductory course or tutorial online, there are many
ressources available.

2 First Steps

In this first chapter we will learn to use Xschem for schematic entry, and how to operate the
ngspice SPICE simulator for circuit simulations. Further, we will make ourself familiar with
the transistor and other passive components available in the IHP Microelectronics SG13G2
technology. While this is strictly speaking a BiCMOS technology offering MOSFETs as well
as SiGe HBTs, we will use it as a pure CMOS technology.

2.1 The Metal-Oxide-Semiconductor Field-Effect-Transistor (MOSFET)

In this course, we will not dive into semiconductor physics and derive the device operation
bottom-up starting from a fundamental level governed by quantum mechanics. Instead, we
will treat the MOSFET as a macroscopic by assuming we have a 4-terminal device, and
the performance of this device regarding its terminal voltages and currents we will largely
derive from the simulation model.

The circuit symbol that we will use for the n-channel MOSFET is shown in Figure 1, and
for the p-channel MOSFET it is shown in Figure 2. A control voltage between gate (“G”)
and source (“S”) causes a current to flow between drain (“D”) and source. The MOSFET is
a 4-terminal device, so the bulk (“B”) can also control the drain-source current flow. Often,
the bulk is connected to source, and then the bulk terminal is not shown to declutter the
schematics.

MOSFET Background

Strictly speaking is the drain-source current of a MOSFET controlled by the voltage
between gate and bulk and the voltage between drain and source. Since bulk is often
connected to source anyway, and many circuit designers historically were already fa-
miliar with the operation of the bipolar junction transistor, it is common to consider
the gate-source voltage (besides the drain-source voltage) as the controlling voltage.
This focus on gate-source implies that the source is special compared to the drain. In a
typical physical MOSFET, however, the drain and source are constructed exactly the
same, and which terminal is drain, and which terminal is source, is only determined by
the applied voltage potentials, and can change dynamically during operation (think of
a MOSFET operating as a switch… which side is the drain, which side is the source?).

6

Unfortunately, this focus on a “special” source has made its way into some MOSFET
compact models. The model that is used in SG13G2 luckily uses the PSP model,
which is formulated symmetrically with regards to drain and source, and is thus very
well suited for analog and RF circuit design. For a detailed understanding of the PSP
model please refer to the model documentation.

Figure 1: Circuit symbol of n-channel MOSFET.

Source: Article Notebook

Figure 2: Circuit symbol of p-channel MOSFET.

Source: Article Notebook

For hand calculations and theoretical discussions we will use the following simplified large-
signal model, shown in Figure 3. A current source 𝐼DS models the current flow between
drain and source, and it is controlled by the three control voltages 𝑉GS, 𝑉DS, and 𝑉SB. Note
that in this way (since 𝐼DS = 𝑓(𝑉DS)) also a resistive behavior between D and S can be
modelled. In case that B and S are shorted then simply 𝑉SB = 0.

Source: Article Notebook

7

https://www.nxp.com/wcm_documents/models/mos-models/model-psp/psp102p4_summary.pdf
https://iic-jku.github.io/analog-circuit-design/index.qmd.html
https://iic-jku.github.io/analog-circuit-design/index.qmd.html
https://iic-jku.github.io/analog-circuit-design/index.qmd.html

Figure 3: The MOSFET large-signal model.

Source: Article Notebook

In an ideal MOSFET no dc current is flowing into the gate, the behavior is purely capacitive.
We model this by two capacitors: 𝐶GG = 𝐶GS + 𝐶GD is the total capacitance when looking
into the gate of the MOSFET. 𝐶GS is usually the dominant capacitance, and 𝐶GD models the
capacitive feedback between D and G, usually induced by a topological overlap capacitance
in the physical construction of the MOSFET. This capacitance is often small compared to
𝐶GS, but in situations where we have a large voltage swing at the drain this capacitance
will be affected by the Miller effect (see Section 19). In hand calculations we will often set
𝐶GD = 0.

MOSFET Bulk Terminal

The bulk connection in Figure 3 seems floating as we only consider it a control terminal,
where the potential difference between source and bulk influences the behaviour of the
MOSFET. However, we do not consider resistive or capacitive effects associated with
this node, which is of course a gross simplification, but nevertheless one we will make
in this course.

Now, as we are skipping the bottom-up approach of deriving the MOSFET large-signal
behaviour from basic principles, we need to understand the behaviour of the elements of
the large-signal model in Figure 3 by using a circuit simulator and observing what happens.
And generally, a first step in any new IC technology should be to investigate basic MOSFET
performance, by doing simple dc sweeps of 𝑉GS and 𝑉DS and looking at 𝐼DS and other large-
and small-signal parameters.

As a side note, the students who want to understand MOSFET behaviour from a physi-
cal angle should consult the MOSFET chapter from the JKU course “Design of Complex
Integrated Circuits” (VL 336.048). A great introduction into MOSFET operation and fab-
rication is given in (Hu 2010), which is available freely online and is a recommended read.
A very detailed description of the MOSFET (leaving usually no question unanswered) is
provided in (Tsividis and McAndrew 2011).

8

https://iic-jku.github.io/analog-circuit-design/index.qmd.html
https://en.wikipedia.org/wiki/Miller_effect
https://www.chu.berkeley.edu/modern-semiconductor-devices-for-integrated-circuits-chenming-calvin-hu-2010/

Now, in order to get started, basic Xschem testbenches are prepared, and first simple dc
sweeps of various voltages and currents will be done. But before that, please look at the
import note below!

Mathematical Notation

Throughout this material, we will largely stick to the following notation:

• A dc quantity is shown with an upper-case letter with upper-case subscripts,
like 𝑉GS.

• Double-subscripts denote dc sources, like 𝑉DD and 𝑉SS.
• An ac (small-signal) quantity is a lower-case letter with a lower-case subscript,

like 𝑔m.
• A total quantity (dc plus ac) is shown as a lowercase letter with upper-case

subscript, like 𝑖DS.
• A upper-case letter with a lower-case subscript is used to denote RMS quanti-

ties, like 𝐼ds.

2.1.1 Large-Signal MOSFET Model

We start with an investigation into the large-signal MOSFET model shown in Figure 3 by
using the simple testbench for the LV NMOS shown in Figure 4.

GNDGND GNDGND

MODEL

.lib cornerMOSlv.lib mos_tt

NGSPICE

.temp 27

.control
save all
save @n.xm1.nsg13_lv_nmos[gm]
save @n.xm1.nsg13_lv_nmos[gds]
save @n.xm1.nsg13_lv_nmos[vth]
save @n.xm1.nsg13_lv_nmos[cgg]
save @n.xm1.nsg13_lv_nmos[cgd]
save @n.xm1.nsg13_lv_nmos[vdss]
save @n.xm1.nsg13_lv_nmos[fug]
save @n.xm1.nsg13_lv_nmos[rg]
save @n.xm1.nsg13_lv_nmos[sid]
op
write dc_lv_nmos.raw
set appendwrite
dc Vds 0 1.5 0.01 Vgs 0 1.5 0.1
write dc_lv_nmos.raw
quit
.endc

Vgs

0.65

Vds

1.5

 dc_lv_nmos.sch
Copyright 2023-2024 IHP PDK Authors, Harald Pretl 2024-08-27 18:49:49SCHEM

M1

D

S

BG

sg13_lv_nmos

m=1
ng=1
l=0.13u
w=1.3u

V
d

load waves

simulate

annotate OP

?
gds=

?
gm=

?
vth=

?
cgs=

?
vdss(vds_sat)=

?
fug(f_t)=

?
cdg=

?
sid=

?
rg=

Figure 4: Testbench for NMOS dc sweeps.

9

Exercise: MOSFET Investigation

Please try to execute the following steps and answer these questions:

1. Get the LV NMOS testbench (available at https://github.com/iic-jku/analog-
circuit-design/blob/main/xschem/dc_lv_nmos.sch) working in your IIC-OSIC-
TOOLS environment.

2. Make yourself familiar with Xschem (change the schematic in various ways, run
a simulation, graph the result).

3. Make youself familiar with ngspice (run various simulations, save nets and pa-
rameters, use the embedded Xschem graphing, explore the interactive ngspice
shell to look at MOSFET model parameters).

4. Explore the LV NMOS sg13_lv_nmos:

1. How is 𝐼DS affected by 𝑉GS and 𝑉DS?
2. Change 𝑊 and 𝐿 of the MOSFET. What is the impact on the above para-

meters? Can you explain the variations?
3. When looking at the model parameters in ngspice, you see that there is a

𝐶GD and a 𝐶DG. Why is this, what could be the difference? Sometimes
these capacitors show a negative value, why?

5. Build testbenches in Xschem for the LV PMOS, the HV NMOS, and the HV
PMOS. Explore the different results.

1. For a given 𝑊 and 𝐿, which device provides more drain current? How are
the capacitances related?

2. If you would have to size an inverter, what would be the ideal ratio of
𝑊𝑝/𝑊𝑛? Will you exactly design this ratio, or are the reasons to deviate?

3. There are LV and HV MOSFETs, and you investigated the difference in
performance. What is the rationale when designing circuits for selection
either an LV type, and when to choose an HV type?

6. Build a test bench to explore the body effect, start with LV NMOS.

1. What happens when 𝑉BS ≠ 0?

2.1.2 Small-Signal MOSFET Model

As you have seen in the previous investigations, the large-signal model of Figure 3 describes
the behaviour of the MOSFET across a wide range of voltages applied at the MOSFET
terminals. Unfortunately, for hand analysis dealing with a nonlinear model is close to
impossible, at the very least it is quite tedious.

However, for many practical situations, we bias a MOSFET with a set of dc voltages applied
to its terminal, and only apply small signal excursions during operation. If we do this, we
can linearize the large-signal model in this dc operating point, and resort to a small-signal
model which can be very useful for hand calculations. Many experienced designers analyze

10

https://github.com/iic-jku/analog-circuit-design/blob/main/xschem/dc_lv_nmos.sch
https://github.com/iic-jku/analog-circuit-design/blob/main/xschem/dc_lv_nmos.sch

their circuits by doing these kind of hand calculations and describing the circuit analyti-
cally, which is a great way to understand fundamental performance limits and relationships
between parameters.

We will use the small-signal MOSFET model shown in Figure 5 for this course. The current-
source 𝑖ds = 𝑔m𝑣gs models the drain current as a function of 𝑣gs, and the resistor 𝑔ds models
the dependency of the drain current by 𝑣ds. The drain current dependency on the source-
bulk voltage (the so-called “body effect”) is introduced by the current source 𝑖ds = 𝑔mb𝑣sb.

Source: Article Notebook

Figure 5: The MOSFET small-signal model.

Source: Article Notebook

As any electronic device the MOSFET introduces noise into the circuit. In this course we
will only consider the drain-source current noise of the MOSFET, given by

𝐼2
n = 4𝑘𝑇 𝛾𝑔d0, (1)

where 𝐼2
n is the power-spectral density of the noise in A2/Hz; 𝑘 is the Boltzmann constant; 𝑇

is the absolute temperature; 𝛾 is a parameter in simplified theory changing between 𝛾 = 2/3
in saturation and 𝛾 = 1 for triode operation; 𝑔d0 is equal to 𝑔m in saturation and 𝑔ds in
triode).

MOSFET Triode and Saturation Region

Sometimes we will refer to different operating modes of the MOSFET like “saturation”
or “triode”. Generally speaking, when the drain-source voltage is small, then the
MOSFET acts as a resistor, and this mode of operation we call “triode” mode. When
the drain-source voltage is increased, at some point the drain-source current saturates
and is no longer a strong function of the drain-source voltage. This mode is called
“saturation” mode. As you can see in the large-signal investigations, these transitions
happen gradually, and it is difficult to define a precise point where one operating mode
switches to the other one. In this sense we use terms like “triode” and “saturation”
only in an approximative sense.

11

https://iic-jku.github.io/analog-circuit-design/index.qmd.html
https://iic-jku.github.io/analog-circuit-design/index.qmd.html

Now we need to see how the small-signal parameters seen in Figure 5 can be investigated
and estimated using circuit simulation.

Exercise: MOSFET Small-Signal Parameters

Please try to execute the following steps and answer the following questions:

1. Reuse the LV NMOS testbench (available at https://github.com/iic-jku/analog-
circuit-design/blob/main/xschem/dc_lv_nmos.sch).

2. Explore the LV NMOS sg13_lv_nmos:

1. How are 𝑔m and 𝑔ds changing when you change the dc node voltages?
2. What is the ratio of 𝑔m to 𝑔mb? What is the physical reason behind this

ratio (you might want to revisit MOSFET device physics at this point)?
3. Take a look at the device capacitances 𝐶gs and 𝐶gd. Why are they impor-

tant? What is the relation to 𝑓T? Note: 𝑓T is the transit frequency where
the current gain of the MOSFET drops to 1, and can be approximated by
2𝜋𝑓T = 𝑔m/𝐶gg.

4. Look at the drain noise current according to the MOSFET model and com-
pare with a hand calculation of the noise. In the noise equation there is the
factor 𝛾, which in triode is 𝛾 = 1 and in saturation is 𝛾 = 2/3 according to
basic text books. Which value of 𝛾 are you calculating? Why might it be
different?

3. Go back to your testbench for the LVS PMOS sg13_lv_pmos:

1. What is the difference in 𝑔m, 𝑔ds, and other parameters between the NMOS
and the PMOS? Why could they be different?

2.2 Conclusion

Congratulations for making it thus far! By now you should have a solid grasp of the tool
handling of Xschem and ngspice, and you should be familiar with the large- and small-signal
operation of both NMOS and PMOS, and the parameters describing these behaviours. If
you feel you are not sufficiently fluent in these things, please go back to the beginning of
Section 2.1 and revisit the relevant sections, or dive into further reading about the MOSFET
operation, like in (Hu 2010).

3 Transistor Sizing Using gm/ID Methodology

When designing integrated circuits it is an important question how to select various para-
meters of a MOSFET, like 𝑊 , 𝐿, or the bias current 𝐼D. In comparison to using discrete
components in PCB design, or also compared to a bipolar junction transistor (BJT), we
have these degrees of freedom, which make integrated circuit design so interesting.

12

https://github.com/iic-jku/analog-circuit-design/blob/main/xschem/dc_lv_nmos.sch
https://github.com/iic-jku/analog-circuit-design/blob/main/xschem/dc_lv_nmos.sch

Often, transistor sizing in entry-level courses is based on the square-law model, where a
simple analytical equation for the drain current can be derived. However, in nanometer
CMOS, the MOSFET behaviour is much more complex than these simple models. Also, this
highly simplified derivations introduce concepts like the threshold voltage or the overdrive
voltage, which are interesting from a theoretical viewpoint, but bear little practical use.

MOSFET Square-Law Model

One of the many simplifactions of the square-law model is that the mobility of the
charge carriers is assumed constant (it is not). Further, the existance of a threshold
voltage is assumed, but in fact this voltage is just existing given a certain definition, and
depending on definition, its value changed. In addition, in nm CMOS, the threshold
voltage is a function on many thing, like 𝑊 and 𝐿.

An additional shortcoming of the square-law model is that it is only valid in strong inver-
sion, i.e. for large 𝑉GS where the drain current is dominated by the drift current. As soon
as the gate-source voltage gets smaller, the square-law model breaks, as the drain current
component based on diffusion currents gets dominant. Modern compact MOSFET models
(like the PSP model used in SG13G2) use hundreds of parameters and fairly complex equa-
tions to somewhat properly describe MOSFET behaviour over a wide range of parameters
like 𝑊 , 𝐿, and temperature. A modern approach to MOSFET sizing is thus based on the
thought to use exactly these MOSFET models, characterize them, put the resulting data
into tables and charts, and thus learn about the complext MOSFET behaviour and use it
for MOSFET sizing.

Being a well-established approach we select the 𝑔m/𝐼D methodology introduced by P. Jespers
and B. Murmann in (Jespers and Murmann 2017). A brief introduction is available here as
well.

The 𝑔m/𝐼D methodology has the huge advantage that is catches MOSFET behavior quite
accurately over a wide range of operating conditions, and the curves look very similar
for pretty much all CMOS technologies, form micrometer bulk CMOS down to nanometer
FinFET devices. Of course the absolute values change, but the method applies universally.

3.1 MOSFET Characterization Testbench

In order to get the required tabulated data we use a testbench in Xschem which sweeps the
terminal voltages, and records various large- and small-signal parameters, which are then
stored in large tables. The testbench for the LV NMOS is shown in Figure 6, and the TB
for the LV PMOS is shown in Figure 7.

We will use Jupyter notebooks to inspect the resulting data, and interpret some important
graphs. This will greatly help to understand the MOSFET behaviour.

13

https://github.com/iic-jku/analog-circuit-design/blob/main/sizing/Ref_Murmann_gmID.pdf

GNDGND GNDGND

g

d

b

GND

n

MODEL

.lib cornerMOSlv.lib mos_tt

NGSPICE_CTRL

.option sparse

.temp 27

.param wx=5u lx=0.13u vbx=0

.noise v(n) vg lin 1 1 1 1

.control
option numdgt=3
set wr_singlescale
set wr_vecnames

compose l_vec values 0.13u 0.2u 0.3u 0.4u 0.5u 1u 5u 10u
compose vg_vec start= 0 stop=1.5 step=25m
compose vd_vec start= 0 stop=1.5 step=25m
compose vb_vec values 0 0.4 0.8 1.2

foreach var1 $&l_vec
 alterparam lx=$var1
 reset
 foreach var2 $&vg_vec
 alter vg $var2
 foreach var3 $&vd_vec
 alter vd $var3
 foreach var4 $&vb_vec
 alter vsb $var4
 run
 wrdata techsweep_sg13_lv_nmos.txt noise1.all
 destroy all
 set appendwrite
 unset set wr_vecnames
 end
 end
 end
end

set appendwrite=0

alterparam lx=0.13u
alterparam vbx=0
reset
op
*showmod
show
write techsweep_sg13g2_lv_nmos.raw
.endc vg

0.65 AC 1

vd

0.75

 techsweep_sg13g2_lv_nmos.sch
(c) 2024 Harald Pretl (adapted from Boris Murmann)2024-08-27 18:49:49SCHEM

M1

D

S

BG

sg13_lv_nmos

m=1
ng=1
l={lx}
w={wx}

simulate

annotate OP
?

gds=

?
gm=

?
vth=

?
cgs=

?
vdss(vds_sat)=

?
fug(f_t)=

?
cdg=

?
sid=

?
rg=

vsb

{vbx}

NGSPICE_SAVE

.save b d g n

.save @n.xm1.nsg13_lv_nmos[cgsol]

.save @n.xm1.nsg13_lv_nmos[cgdol]

.save @n.xm1.nsg13_lv_nmos[cdd]

.save @n.xm1.nsg13_lv_nmos[cgb]

.save @n.xm1.nsg13_lv_nmos[cgd]

.save @n.xm1.nsg13_lv_nmos[cgg]

.save @n.xm1.nsg13_lv_nmos[cgs]

.save @n.xm1.nsg13_lv_nmos[css]

.save @n.xm1.nsg13_lv_nmos[gds]

.save @n.xm1.nsg13_lv_nmos[gm]

.save @n.xm1.nsg13_lv_nmos[gmb]

.save @n.xm1.nsg13_lv_nmos[ids]

.save @n.xm1.nsg13_lv_nmos[l]

.save @n.xm1.nsg13_lv_nmos[vgs]

.save @n.xm1.nsg13_lv_nmos[vds]

.save @n.xm1.nsg13_lv_nmos[vsb]

.save @n.xm1.nsg13_lv_nmos[vth]

.save @n.xm1.nsg13_lv_nmos[vdss]

.save @n.xm1.nsg13_lv_nmos[fug]

.save @n.xm1.nsg13_lv_nmos[sid]

.save @n.xm1.nsg13_lv_nmos[sfl]

.save @n.xm1.nsg13_lv_nmos[cjd]

.save @n.xm1.nsg13_lv_nmos[cjs]

.save @n.xm1.nsg13_lv_nmos[rg]

1

H4
vd

Figure 6: Testbench for LV NMOS 𝑔m/𝐼D characterization.

GNDGND GND GND

g

d

b

GND

n

MODEL

.lib cornerMOSlv.lib mos_tt

 techsweep_sg13g2_lv_pmos.sch
(c) 2024 Harald Pretl (adapted from Boris Murmann) 2024-08-27 18:49:49SCHEM

simulate

annotate OP

?
gds=

?
gm=

?
vth=

?
cgs=

?
vdss(vds_sat)=

?
fug(f_t)=

?
cdg=

?
sid=

?
rg=

NGSPICE_SAVE

.save b d g n

.save @n.xm1.nsg13_lv_pmos[cgsol]

.save @n.xm1.nsg13_lv_pmos[cgdol]

.save @n.xm1.nsg13_lv_pmos[cdd]

.save @n.xm1.nsg13_lv_pmos[cgb]

.save @n.xm1.nsg13_lv_pmos[cgd]

.save @n.xm1.nsg13_lv_pmos[cgg]

.save @n.xm1.nsg13_lv_pmos[cgs]

.save @n.xm1.nsg13_lv_pmos[css]

.save @n.xm1.nsg13_lv_pmos[gds]

.save @n.xm1.nsg13_lv_pmos[gm]

.save @n.xm1.nsg13_lv_pmos[gmb]

.save @n.xm1.nsg13_lv_pmos[ids]

.save @n.xm1.nsg13_lv_pmos[l]

.save @n.xm1.nsg13_lv_pmos[vgs]

.save @n.xm1.nsg13_lv_pmos[vds]

.save @n.xm1.nsg13_lv_pmos[vsb]

.save @n.xm1.nsg13_lv_pmos[vth]

.save @n.xm1.nsg13_lv_pmos[vdss]

.save @n.xm1.nsg13_lv_pmos[fug]

.save @n.xm1.nsg13_lv_pmos[sid]

.save @n.xm1.nsg13_lv_pmos[sfl]

.save @n.xm1.nsg13_lv_pmos[cjd]

.save @n.xm1.nsg13_lv_pmos[cjs]

.save @n.xm1.nsg13_lv_pmos[rg]

M1

D

S

BG

sg13_lv_pmos

m=1
ng=1
l={lx}
w={wx}

vd

0.75

vsb

{vbx}vg

0.65 AC 1
1

H1
vd

NGSPICE_CTRL

.option sparse

.temp 27

.param wx=5u lx=0.13u vbx=0

.noise v(n) vg lin 1 1 1 1

.control
option numdgt=3
set wr_singlescale
set wr_vecnames

compose l_vec values 0.13u 0.2u 0.3u 0.4u 0.5u 1u 5u 10u
compose vg_vec start= 0 stop=1.5 step=25m
compose vd_vec start= 0 stop=1.5 step=25m
compose vb_vec values 0 0.4 0.8 1.2

foreach var1 $&l_vec
 alterparam lx=$var1
 reset
 foreach var2 $&vg_vec
 alter vg $var2
 foreach var3 $&vd_vec
 alter vd $var3
 foreach var4 $&vb_vec
 alter vsb $var4
 run
 wrdata techsweep_sg13_lv_pmos.txt noise1.all
 destroy all
 set appendwrite
 unset set wr_vecnames
 end
 end
 end
end

set appendwrite=0

alterparam lx=0.13u
alterparam vbx=0
reset
op
*showmod
show
write techsweep_sg13g2_lv_pmos.raw
.endc

Figure 7: Testbench for LV PMOS 𝑔m/𝐼D characterization.

14

3.2 NMOS Characterization

First, we will start looking at the LV NMOS. In Section 3.3 we have the corresponding
graphs for the LV PMOS. In this lecture, we will only use the LV MOSFETs. While there
are also the HV types available, they are mainly used for high-voltage circuits, like circuits
connecting to the outside world. Here, we only will design low-voltage circuits running at a
nominal supply voltage of 1.5 V, so only the LV types are of interest to us.

The first import graph is the plot of 𝑔m/𝐼D and 𝑓T versus the gate-source voltage 𝑉GS. First
let us answer the question why 𝑔m/𝐼D is a good parameter to look at, and actually this is also
the central parameter in the 𝑔m/𝐼D methodology. In many circuits that are biased in class-A
(i.e., with a constant quiescent current that is larger than the largest signal excursion, see
biasing) we want to get a large amplification from a MOSFET, which corresponds to a large
𝑔m. We want this by spending the minimum biasing current possible (ideally zero), as we
always design for minimum power consumption. Thus, a high 𝑔m/𝐼D ratio is good.

Power Consumption

Designing for minimum power consumption is pretty much always mandated. For
battery-operated equipment it is a paramount requirement, but also in other equipment
electrical energy consumption is a concern, and often severly limited by the cooling
capabilities of the electrical system.

However, as can be seen in the below plot, there exists a strong and unfortunate trade-off
with device speed, characterized here by the transit frequency 𝑓T. It would be ideal if there
exists a design point where we get high transconductance per bias current concurrently to
having the fastest operation, but unfortunately, this is clearly not the case. The 𝑔m/𝐼D
peaks for 𝑉GS < 0.3 V, and the highest speed we get at 𝑉GS ≈ 1.2 V. The dashed vertical
line plots the nominal threshold voltage, as you can see in this continuum of parameter
space, it marks not a particularly special point.

Note that 𝑔m
𝐼D

= 1
𝑛𝑉T

(2)

for a MOSFET in weak inversion (i.e., small gate-source voltage). 𝑛 is the subthreshold
slope, and 𝑉T = 𝑘𝑇 /𝑞 which is 25.8 mV at 300 K. We thus have 𝑛 ≈ 1.38 for this LV NMOS,
which falls nicely into the usual range for 𝑛 of 1.3 to 1.5 for bulk CMOS (FinFET have 𝑛
very close to 1).

For the classical square-law model of the MOSFET in strong inversion, 𝑔m/𝐼D is given as

𝑔m
𝐼D

= 2
𝑉GS − 𝑉th

= 2
𝑉od

(3)

with 𝑉th the threshold voltage and 𝑉od the so-called “overdrive voltage.”

15

https://en.wikipedia.org/wiki/Power_amplifier_classes#Class_A

Why 300K?

Why are we so often using a temperature of 300 K for a typical condition? As this
corresponds to roughly 27∘C, this accounts for some self heating compared to otherwise
cooler usual room temperatures. Further, engineers like round numbers which are easy
to remember, so 300 K is used as a proxy for room temperature.

As we can also see from belows plot, the peak transit frequency of the LV NMOS is about
75 GHz, which allows building radio-frequency circuits up to ca. 𝑓T/10 = 7.5 GHz, which
is a respectible number. It is no coincidence, that the transition for RF design in the
GHz-range switched from BJT-based technologies to CMOS roughly in the timeframe when
130nm CMOS became available (ca. 2000).

Source: Article Notebook

The following figure plots 𝑓T against 𝑔m/𝐼D for several different 𝐿. As you can see, device
speeds maximizes for a low 𝑔m/𝐼D and a short 𝐿. As you can see the drain-source voltage is
kept at 𝑉DS = 0.75 V = 𝑉DD/2, which is a typical value keeping the MOSFET in saturation
across the characterization sweeps. Further, the source-bulk voltage is kept at 𝑉SB = 0 V,
which means bulk and source terminals are connected.

16

https://iic-jku.github.io/analog-circuit-design/index.qmd.html

Source: Article Notebook

The next plot shows the ratio of 𝑔m/𝑔ds versus 𝑔m/𝐼D. The ratio 𝑔m/𝑔ds is the so-called
“self-gain” of the MOSFET, and shows the maximum voltage gain we can achieve in a
single transistor configuration. As one can see the self gain increases for increasing 𝐿, but
this also gives a slower transistor, so again there is a trade-off. This plot allows us to select
the proper 𝐿 of a MOSFET if we know which amount of self gain we need.

17

https://iic-jku.github.io/analog-circuit-design/index.qmd.html

Source: Article Notebook

The following figure plots the drain current density 𝐼D/𝑊 as a function of 𝑔m/𝐼D and 𝐿.
With this plot we can find out how to set the 𝑊 of a MOSFET once we know the biasing
current 𝐼D, the 𝐿 (selected according to self gain, 𝑓T, and other considerations) and the
𝑔m/𝐼D design point we selected. The drain current density 𝐼D/𝑊 is a very useful nomalized
metric to use, because the physical action in the MOSFET establishes a charge density in
the channel below the gate, and the changing of the 𝑊 of the device merely transforms this
charge density into an absolute parameter (together with 𝐿).

18

https://iic-jku.github.io/analog-circuit-design/index.qmd.html

Source: Article Notebook

The following plot shows the minimum drain-source voltage 𝑉ds,sat that we need to establish
in order to keep the MOSFET in saturation. As you can see, this value is almost independent
of 𝐿, and increases for small 𝑔m/𝐼D. So for low-voltage circuits, where headroom is precious,
we tend to bias at 𝑔m/𝐼D ≥ 10, wheres for fast circuits we need to go to small 𝑔m/𝐼D ≤ 5
requiring substantial voltage headroom per MOSFET stage that we stack on top of each
other.

19

https://iic-jku.github.io/analog-circuit-design/index.qmd.html

Source: Article Notebook

For analog circuits the noise performance is usually quite important. Thermal noise of
a resistor (the Johnson-Nyquist noise) has a flat power-spectral density (PSD) given by
𝑉 2

n /Δ𝑓 = 4𝑘𝑇 𝑅, where 𝑘 is Boltzmann’s constant, 𝑇 absolute temperature, and 𝑅 the
value of the resistor (the unit of 𝑉 2

n /Δ𝑓 is V2/Hz). This PSD is essentially flat until very
high frequencies where quantum effects start to kick in.

Noise Notation

We usually leave the Δ𝑓 away for a shorter notation, so we write 𝑉 2
n when we actually

mean 𝑉 2
n /Δ𝑓 . In case of doubt look at the unit of a quantity, whether is shows V2 or

V2/Hz or V/
√

Hz (or I2 or I2/Hz or I/
√

Hz).
Please also note that the pair of 𝑘𝑇 pretty much always shows up together, so when you
do a calculation and you miss the one or the other, that is often a sign for miscalculation.
Boltzmann’s constant 𝑘 = 1.38 ⋅ 10−23 J/K is just a scaling factor from thermal energy
expressed as a temperature 𝑇 to energy 𝐸 = 𝑘𝑇 expressed in Joule.
Further, when working with PSD there is the usage of a one-sided (0 ≥ 𝑓 < ∞) or
two-sided power spectral density (PSD) (−∞ < 𝑓 < ∞). The default in this lecture
is the usage of the one-sided PSD.

In this lecture the only MOSFET noise we consider is the drain noise (as discussed in
Section 2.1.2), showing up as a current noise between drain and source. For a for realistic

20

https://iic-jku.github.io/analog-circuit-design/index.qmd.html
https://en.wikipedia.org/wiki/Johnson–Nyquist_noise

MOSFET noise model, also a (correlated) gate noise component and the thermal noise of
the gate resistance needs to be considered.

The factor 𝛾 (Equation 1) is a function of many things (in classical theory, 𝛾 = 2/3 in
saturation and 𝛾 = 1 in triode), and it is characterized in the following plot as a function of
𝑔m/𝐼D and 𝐿. So when calculating MOSFET noise we can lookup 𝛾 in the below plot, and
use Equation 1 to calculate the effective drain current noise.

Source: Article Notebook

In a MOSFET, unfortunately, besides the thermal noise according to Equation 1, there is
also a substantial low-frequency excess noise, called “flicker noise” due to its characteristic
𝐼2

d,nf = 𝐾f/𝑓 behaviour (this means that this noise PSD decreases versus frequency). In
order to characterize this flicker noise the following plot shows the cross-over frequency 𝑓co,
where the flicker noise is as large as the thermal noise. As can be seen in the below plot, this
frequency is a strong function of 𝐿 and 𝑔m/𝐼D. Generally, the flicker noise is proportional
to (𝑊𝐿)−1, so the larger the device is, the lower the flicker noise. The parameter 𝑔m/𝐼D
largely stays constant when we keep 𝑊/𝐿 constant, so for a given 𝑔m/𝐼D flicker noise is
proportinal to 1/𝐿2. However, increasing 𝐿 lowers device speed dramatically, so here we
have a trade-off between flicker-noise performance and MOSFET speed, and this can have
dramatic consequences for high-speed circuits.

21

https://iic-jku.github.io/analog-circuit-design/index.qmd.html

MOSFET Flicker Noise

The physical origin of flicker noise is the crystal interface between silicon (Si) and the
silicondioxide (SiO2). Since these are different materials, there are dangling bonds,
which can capture charge charriers travelling in the channel. After a random time,
these carriers are released, and flicker noise is the result. The amount of flicker noise is
a function of the manufacturing process, and will generally be different between device
types and wafer foundries.

As you can see in the following plot, 𝑓co can reach well into the 10’s of MHz for short
MOSFETs, significantly degrading the noise performance of a circuit.

Source: Article Notebook

3.3 PMOS Characterization

In the following, we have the same plots as discussed in Section 3.2, but now for the PMOS.

PMOS Sign Convention

In all PMOS plots we plot positive values for voltages and currents, to have compatible
plots to the NMOS. Of course, in a PMOS, voltages and currents have different polarity

22

https://iic-jku.github.io/analog-circuit-design/index.qmd.html

compared to the NMOS.

𝑔m/𝐼D and 𝑓T versus the gate-source voltage 𝑉GS:

Source: Article Notebook

𝑓T against 𝑔m/𝐼D for several different 𝐿. One can see significantly lower top speed for the
PMOS compared to the NMOS, which means for high-speed circuits the NMOS should be
used.

23

https://iic-jku.github.io/analog-circuit-design/index.qmd.html

Source: Article Notebook

𝑔m/𝑔ds versus 𝑔m/𝐼D. Unfortunately, one can see a modelling error for the PMOS in this
plot. The self gain 𝑔m/𝑔ds reaches non-physical values, which indicates an issue with the 𝑔ds
modelling for the PMOS. We can not use these values for our circuit sizing, so we will use
the respective NMOS plots also for the PMOS.

Beware of Modelling Issues

This example shows how important it is to benchmark the device models when starting
to use a new technology. Modelling artifacts like the one shown are quite often hap-
pening, as setting up the device compact models and parametrizing them according to
measurement data is a very complex task. In any case, just be aware that modelling
issues could exist in whatever PDK you are going to use!

24

https://iic-jku.github.io/analog-circuit-design/index.qmd.html

Source: Article Notebook

Drain current density 𝐼D/𝑊 as a function of 𝑔m/𝐼D and 𝐿:

25

https://iic-jku.github.io/analog-circuit-design/index.qmd.html

Source: Article Notebook

Minimum drain-source voltage 𝑉ds,sat versus 𝑔m/𝐼D and 𝐿:

26

https://iic-jku.github.io/analog-circuit-design/index.qmd.html

Source: Article Notebook

Noise factor 𝛾 versus 𝑔m/𝐼D and 𝐿:

27

https://iic-jku.github.io/analog-circuit-design/index.qmd.html

Source: Article Notebook

Flicker noise corner frequency 𝑓co versus 𝑔m/𝐼D and 𝐿. If you compare this figure carefully
with the NMOS figure you can see that for some operating points the flicker noise for the
PMOS is lower than for the NMOS. This is often true for CMOS technologies, so it can
be an advantage to use a PMOS transistor in places where flicker noise is critical, like an
OTA input stage. Using PMOS has the further advantage that the bulk node can be tied
to source (which for NMOS is only possible in a triple-well technology, which is often not
available), which gets rid of the body effect.

28

https://iic-jku.github.io/analog-circuit-design/index.qmd.html
https://en.wikipedia.org/wiki/Threshold_voltage

Source: Article Notebook

4 First Circuit: MOSFET Diode

The first (simple) circuit we will investigate is a MOSFET, where the gate is shorted with
a drain, a so-called MOSFET “diode”, which is shown in Figure 8. This diode is one half
of a current mirror, which we will investigate in a future section.

Source: Article Notebook

29

https://iic-jku.github.io/analog-circuit-design/index.qmd.html
https://iic-jku.github.io/analog-circuit-design/index.qmd.html

Figure 8: A MOSFET connected as a diode.

Source: Article Notebook

Why looking at a single-transistor circuit at all? By starting with the simplest possible
circuit we can develop important skills in circuit analysis (setting up and calculating a small-
signal model, calculating open-loop gain, calculate noise) and Xschem/ngspice simulation
testbench creation. We safely assume that also the Mona Lisa was not Leonardo da Vinci’s
first painting, so let’s start slow.

This diode is usually biased by a current source, shown as 𝐼bias in the figure. Depending on
MOSFET sizing with 𝑊 and 𝐿, a certain gate-source voltage 𝑉GS will develop. This voltage
can be used as a biasing voltage for other circuit parts, for example.

Feedback in the MOSFET Diode

It is important to realize that this configuration essentially employs a feedback loop
for operation. The voltage at the drain of the MOSFET is sensed by the gate, and the
gate voltage changes until the 𝐼D is exactly equal to 𝐼bias. In this sense this is probably
the smallest feedback circuit one can build.

4.1 MOSFET Diode Sizing

We will now build this circuit in Xschem. For sizing the MOSFET we will use the 𝑔m/𝐼D
methodology introduced in Section 3.

Exercise: MOSFET Diode Sizing

Please build a MOSFET diode circuit in Xschem where you use an LV NMOS, set
𝐼bias = 20 𝜇A, 𝐿 = 0.13 𝜇m, and we want to use 𝑔m/𝐼D = 10 (often a suitable compro-
mise between transistor speed and 𝑔m efficiency).

30

https://iic-jku.github.io/analog-circuit-design/index.qmd.html

1. Use the figures in Section 3.2 to find out the proper value for 𝑊 .
2. What is 𝑓T for this MOSFET? What is the value for 𝑔m and 𝑔ds?
3. Draw the circuit in Xschem, and simulate the operating point. Do the values

match to the values found out before during circuit sizing?

Before continuing, please finish the previous exercise. Once you are done, compare with the
below provided solution.

Solution: MOSFET Diode Sizing

1. Using the fact that 𝐼bias = 𝐼D = 20 𝜇A and 𝑔m/𝐼D = 10 directly provides 𝑔m =
0.2 mS.

2. Using the self-gain plot, we see that 𝑔m/𝑔ds ≈ 21, so 𝑔ds ≈ 9.5 𝜇S. The 𝑓T can
easily be found in the respective plot to be 𝑓T = 23 GHz.

3. The 𝑊 of the MOSFET we find using the drain current density plot and the
given bias current. Rounding to half-microns results in 𝑊 = 1 𝜇m.

4. Since we are looking at the graphs, we further find 𝛾 = 0.84, 𝑉ds,sat = 0.18 V,
and 𝑓co ≈ 15 MHz.

5. In addition, we expect 𝑉GS ≈ 0.6 V.

An example Jupyter notebook to extract these values accurately you can find here. An
Xschem schematic for this exercise is provide as well.

4.2 MOSFET Diode Large-Signal Behaviour

As discussed above, the MOSFET diode configuration is essentially a feedback loop. Before
we will analyse this loop in small-signal, we want to investgate how this loop settles in
the time domain, and by doing this we can observe the large-signal settling behaviour. To
simulate this, we change the dc bias source from the previous example to a transient current
source, which we will turn on after some ns. The resulting Xschem testbench is shown in
Figure 9.

In Figure 9 another interesting effect can be observed: While the turn-on happens quite
rapidly (essentially the bias current source charges the gate capacitance, until the gate-
source voltage is large enough that the drain current counteracts the bias current), the
turn-off shows a very long settling tail. This is due to the fact that as the gate capacitance
is discharged by the drain current the 𝑉GS drops, which in turn reduces the drain current,
which will make the discharge even slower. We have an effect similar to the capacitor
discharge by a diode (Hellen 2003).

It is thus generally a good idea to add power-down switches to the circuits to disable the
circuit quickly by pulling floating nodes to a defined potential (usually 𝑉DD or 𝑉SS) and to
avoid long intermediate states during power down. This will also allow a turn-on from a
well-defined off-state.

31

./sizing/sizing_mosfet_diode.ipynb
./xschem/mosfet_diode_sizing.sch

GNDGND GND

v_gs

v_dd

MODEL

.lib cornerMOSlv.lib mos_tt

NGSPICE

.temp 27

.control
option sparse
save all
save i(ibias)
tran 0.1p 200p
write mosfet_diode_settling.raw
.endc

Vdd

1.5

 mosfet_diode_settling.sch
Copyright 2024 Harald Pretl 2024-08-27 18:49:49SCHEM

M1

D

S

BG

sg13_lv_nmos

m=1
ng=1
l=0.13u
w=1u

simulate

Ibias
dc 0 pwl(0 0 10p 0 11p 20u 70p 20u 71p 0)

load waves

Figure 9: Testbench for MOSFET diode transient settling.

4.3 MOSFET Diode Small-Signal Analysis

We now want to investigate the small-signal behaviour of the MOSFET diode. Based on the
small-signal model of the MOSFET in Figure 5 we realize that gate and drain are shorted,
and we also connect bulk to source. We can thus simplify the circit to the one shown in
Figure 10.

Source: Article Notebook

Figure 10: The MOSFET diode small-signal model.

Source: Article Notebook

32

https://iic-jku.github.io/analog-circuit-design/index.qmd.html
https://iic-jku.github.io/analog-circuit-design/index.qmd.html

Ground Node Selection

For small-signal analysis we would not need to declare one node as the ground potential.
However, when doing so, and selecting the ground node strategically, we can simplify
the analysis, as we usually do not formulate KCL for the ground node (as we have
only 𝑁 − 1 independent KCL equations, 𝑁 being the number of nodes in the circuit),
and the potential difference equations are simpler if one node is at 0 𝑉 .

For calculating the small-signal impedance of the MOSFET diode we formulate KCL at the
top node to get

𝑖bias − 𝑠𝐶gs𝑣gs − 𝑔m𝑣gs − 𝑔ds𝑣gs = 0.

It follows that
𝑍diode(𝑠) = 𝑣gs

𝑖bias
= 1

𝑔m + 𝑔ds + 𝑠𝐶gs
. (4)

When neglecting 𝑔ds and at dc we get 𝑍diode = 1/𝑔m, which is an important result and
should be memorized.

The Admittance is Your Friend

In circuit analysis it is often algebraically easier to work with admittance instead of
impedance, so please remember that Ohm’s law for a conductance is 𝐼 = 𝐺 ⋅ 𝑉 , and
for a capacitance is 𝐼 = 𝑠𝐶 ⋅ 𝑉 . When writing equations, it is also practical to keep
𝑠𝐶 together, so we will strive to sort terms accordingly.

Looking at Equation 4 we see that for low frequencies, the diode impedance is resistive, and
for high frequencies it becomes capactive as the gate-source capacitance starts to dominate.
The corner frequeny of this low-pass can be calculated as

𝜔c = 𝑔m + 𝑔ds
𝐶gs

≈ 𝜔T

which is pretty much the transit frequency of the MOSFET!

4.4 MOSFET Diode Stability Analysis

The diode-connected MOSFET forms a feedback loop. What is the open-loop gain? For
calculating it, we are breaking the loop, and apply a dummy 𝐶∗

gs at the right side to keep
the impedances correct. A circuit diagram is shown in Figure 11, we break the loop at the
dotted connection. As we can see in this example, it is critically important when breaking
up a loop for analysis (also for simulation!) to keep the terminal impedances the same. Only
in special cases where the load impedance is very high or the driving impedance is very low
is it acceptable to disregard loading effects!

Source: Article Notebook

33

https://iic-jku.github.io/analog-circuit-design/index.qmd.html

Figure 11: The MOSFET diode small-signal circuit for open-loop analysis.

Source: Article Notebook

By inspecting Figure 11 we see that

𝑣out = −𝑔m𝑣in
1

𝑔ds + 𝑠𝐶gs
.

The open-loop gain 𝐻ol(𝑠) is thus

𝐻ol(𝑠) = 𝑣out
𝑣in

= − 𝑔m
𝑔ds + 𝑠𝐶gs

. (5)

Inspecting Equation 5 we realize that

1. the dc gain 𝑔m/𝑔ds is the self-gain of the MOSFET, so 20 log(0.2 ⋅ 10−3/9.6 ⋅ 10−6) =
26.4 dB, and

2. there is a pole at 𝜔p = −𝑔ds/𝐶gs, which is at 9.6 ⋅ 10−6/(2𝜋 ⋅ 1.4 ⋅ 10−15) = 1.1 GHz.

With this single pole location in 𝐻ol(𝑠) this loop is perfectly stable at under all conditions.

The question is now how to simulate this open-loop gain, and how to break the loop open
in simulation? In general there are various methods, as we can use artificially large (ideal)
inductors and capacitors to break loops open and still establish the correct dc operating
points for the ac loop analysis. However, mimicking the correct loading can be an issue,
and requires a lot of careful consideration.

There is an alternative method which breaks the loop open only by adding an ac voltage
source in series (thus keeps the dc operating point intact), or injects current using a current
source. Based on both measurements the open-loop gain can be calculated. This is called
Middlebrook’s method (Middlebrook 1975) which is based on double injection, and we
will use it for our loop simulations. This method is detailed in Section 18.

We now want to simulate the open-loop transfer function 𝐻ol(𝑠) by using Middlebrook’s
method and confirm our analysis above.

34

https://iic-jku.github.io/analog-circuit-design/index.qmd.html

Exercise: MOSFET Diode Loop Analysis

Please build a simulation testbench in Xschem to simulate the open-loop transfer
function of the MOSFET diode. Confirm the dc gain and pole location as given by
Equation 5.
If you are getting stuck you can look at this Xschem testbench, shown in Figure 12.

GNDGND GND

v_dd

vf vr

GND GNDGND

v_gs

MODEL

.lib cornerMOSlv.lib mos_tt

NGSPICE

.temp 27

.control
save all
op
ac dec 101 30k 30G
let tv=-v(vr)/v(vf)
let ti=-i(vir)/i(vif)
let t=(tv*ti - 1)/(tv + ti + 2)
plot db(t)
plot 180/pi*ph(t)
write mosfet_diode_loopgain.raw
.endc

Vdd

1.5

 mosfet_diode_loopgain.sch
Copyright 2024 Harald Pretl 2024-08-27 18:49:49SCHEM

M1

D

S

BG

sg13_lv_nmos

m=1
ng=1
l=0.13u
w=1u

simulate annotate OP

Ibias1
20u

V
te

st

d
c

0
 a

c
1

M2

D

S

BG

sg13_lv_nmos

m=1
ng=1
l=0.13u
w=1u

Ibias2
20u

V
ir

V
if

Itest
dc 0 ac 1

Figure 12: Testbench for MOSFET diode stability analysis.

From simulation we see that the open-loop gain is 24.9 dB at low frequencies, which matches
quite well our prediction of 26.4 dB. In the Bode plot we see a low-pass with a −3 dB corner
frequency of 1.4 GHz, which again is fairly close to our prediction of 1.1 GHz.

4.5 MOSFET Diode Noise Calculation

As a final exercise on the MOSFET diode circuit we want to calculate the output noise
when we consider 𝑉GS the output reference voltage which is created when passing a bias
current through the MOSFET diode. The bias current we will assume noiseless.

We will use the small-signal circuit shown in Figure 13.

Source: Article Notebook

35

./xschem/mosfet_diode_loopgain.sch
https://iic-jku.github.io/analog-circuit-design/index.qmd.html

Figure 13: The MOSFET diode small-signal model with drain noise source.

Source: Article Notebook

As we have already calculated the small-signal diode impedance in Equation 4 we will use
this result, and just note that the drain current noise of the MOSFET flows through this
impedance. The noise voltage at 𝑣gs is thus given as

𝑉 2
n = 𝑍2

diode𝐼2
n,d.

The drain current noise of the MOSFET is given as (introduced in Section 2.1.2)

𝐼2
n,d = 4𝑘𝑇 𝛾𝑔m.

For low frequencies (ignoring 𝑔ds and 𝐶gs) we get

𝑉 2
n = 𝑍2

diode𝐼2
n,d = 1

𝑔2
m

4𝑘𝑇 𝛾𝑔m = 4𝑘𝑇 𝛾
𝑔m

which is the thermal noise of a resistor of value 1/𝑔m enhanced by the factor 𝛾.

We now calculate the full equation, and after a bit of algebra arrive at

𝑉 2
n (𝑓) = 4𝑘𝑇 𝛾𝑔m

(𝑔m + 𝑔ds)2 + (2𝜋𝑓𝐶gs)2 . (6)

If we are interested in the PSD of the noise then Equation 6 gives us the result. If we are
interested in the rms value (the total noise) we need to integrate this equation, using the
following identity:

Useful Integral for Noise Calculations

∫
∞

0

𝑎
𝑏2 + 𝑐2𝑓2 𝑑𝑓 = 𝜋

2
𝑎

𝑏 ⋅ 𝑐 (7)

Using the integral help in Equation 7, we can easily transform Equation 6 to

𝑉 2
n,rms = ∫

∞

0
𝑉 2

n (𝑓)𝑑𝑓 = 𝑘𝑇 𝛾𝑔m
(𝑔m + 𝑔ds)𝐶gs

. (8)

36

https://iic-jku.github.io/analog-circuit-design/index.qmd.html

The form of Equation 8 is the exact solution, but we gain additional insight if we assume
that 𝑔m + 𝑔ds ≈ 𝑔m and then

𝑉 2
n,rms = 𝑘𝑇 𝛾

𝐶gs
. (9)

Inspecting Equation 9 we see our familiar 𝑘𝑇 /𝐶 noise enhanced by the factor 𝛾! Calculating
this value for our MOSFET diode we get √𝑉 2

n,rms = √1.38 ⋅ 10−23 ⋅ 300 ⋅ 0.84/1.4 ⋅ 10−15 =
1.58 mV, which is a sizeable value! We run circuits in this technology at 𝑉DD = 1.5 V, which
leaves us with a signal swing of ca. 1.1 Vpp, resulting in a dynamic range in this case of
20 log(1.58 ⋅ 10−3/0.39) ≈ −48 dB.

Large Bandwidth and Noise

Large BW circuits can integrate noise over a wide bandwidth resulting in considerable
rms noise.

Exercise: MOSFET Diode Noise

Please build a simulation testbench in Xschem to simulate the noise performance of the
MOSFET diode, and confirm the rms noise value that we just calculated. Look at the
rms value and the PSD of the noise, and play around with the integration limits. What
is the effect? Can you see the flicker noise in the PSD? How much is its contribution
to the rms noise?
If you are getting stuck you can look at this Xschem testbench, shown in Figure 14.

GNDGND GND

v_gs

v_dd

MODEL

.lib cornerMOSlv.lib mos_tt

NGSPICE

.temp 27

.control
option sparse
save all
op
noise v(v_gs) Ibias dec 101 1k 300e9
setplot noise1
plot loglog onoise_spectrum
setplot noise2
print onoise_total
write mosfet_diode_noise.raw
.endc

Vdd

1.5

 mosfet_diode_noise.sch
Copyright 2024 Harald Pretl 2024-08-27 18:49:49SCHEM

M1

D

S

BG

sg13_lv_nmos

m=1
ng=1
l=0.13u
w=1u

simulate annotate OP

Ibias
dc 20u ac 1

Figure 14: Testbench for MOSFET diode noise analysis.

37

./xschem/mosfet_diode_noise.sch

4.6 Conclusion

In this section we investigated the simple MOSFET-diode circuit. We learned important
skills like how to derive a small-signal model, how to calculate important features like noise
and open-loop gain for stability analysis. We introduced Middlebrook’s method to have a
mechanism to open up loops in simulation (and calculation) without disturbing operating
points for change loading conditions.

If you feel that you have not yet mastered these topics or are uncertain in the operation
of ngspice, please go back to the beginning of the section and read through the theory and
redo the exercises.

5 Current Mirror

In this section we will look into a fundamental building block which is often used in in-
tegrated circuit design, the current mirror. A diagram is shown in Figure 15 with one
MOSFET diode converting the incoming bias current into a voltage, and two output MOS-
FETs working as current sources, which are biased from the diode. By properly selecting
all 𝑊 and 𝐿 the input current can be scaled, and multiple copies can be created at once.
Shown in the figure are two output currents, but any number of parallel branches can be
realized.

Source: Article Notebook

Figure 15: A current mirror with two output branches.

Source: Article Notebook

The output current 𝐼out1 is then given by

𝐼out1 = 𝐼bias
𝑊2
𝐿2

𝐿1
𝑊1

38

https://iic-jku.github.io/analog-circuit-design/index.qmd.html
https://iic-jku.github.io/analog-circuit-design/index.qmd.html

and the output current 𝐼out2 is given by

𝐼out2 = 𝐼bias
𝑊3
𝐿3

𝐿1
𝑊1

.

For good matching in layout care has to be taken that the MOSFET widths and lengths are
constructed out of unit elements of identical size, where an appropiate amount of these
single units are then arranged in series or parallel configuration to arrive at the target 𝑊
and 𝐿.

As we know from earlier investigations of the MOSFET performance in Section 3 the drain
current of a MOSFET is a function of 𝑉GS and 𝑉DS. As long as the MOSFET stays in
saturation (i.e., 𝑉DS > 𝑉ds,dsat) the drain current is just a mild function of 𝑉DS (essentially
the effect of 𝑔ds, which is the output conductance of the MOSFET). A fundamental flaw of
the basic current mirror shown in Figure 15 is the mismatch of the 𝑉DS of the MOSFET. The
input-side diode has 𝑉GS = 𝑉DS, whereas the output current sources have a 𝑉DS depending
on the connected circuitry. Improved current mirrors exist (basically fixing this flaw), still,
when just a simple current mirror is required this structure is used for its simplicity.

Exercise: Current Mirror

Please construct a current mirror based on the MOSFET-diode which we sized in
Section 4. The input current 𝐼bias = 20 𝜇A, and we want three output currents of size
10 𝜇A, 20 𝜇A, and 40 𝜇A.
Sweep the output voltage of all three current branches and see over which voltage
range an acceptable current is created. For which output voltage range is the current
departing from its ideal value, and why?
You see that the slope of the output current is quite bad, as 𝑔ds is too large. We can
improve this by changing the length to 𝐿 = 5 𝜇m (for motivation, please look at the
graphs in Section 3). In addition, for a current mirror we are not interested in a high
𝑔m/𝐼D value, so we can use 𝑔m/𝐼D = 5 in this case. Please size the current mirror
MOSFETs accordinly (please round the 𝑊 to half micron, to keep sizes a bit more
practical). Compare this result to the previous one, what changed?
In case you get stuck, here are Xschem schematics for the original and the improved
current mirrors.

6 Differential Pair

Like the current mirror in Section 5 the differential pair is an ubiquitous building block
often used in integrated circuit design. The fundamental structure is given in Figure 16.

Source: Article Notebook

39

./xschem/current_mirror.sch
./xschem/current_mirror_improved.sch
https://iic-jku.github.io/analog-circuit-design/index.qmd.html

Figure 16: A differential pair.

Source: Article Notebook

In order to understand its operation it is instructive to separate the input condition into (1)
a purely differential voltage, and (2) into a common-mode voltage, and see what the impact
on the output currents is.

6.1 Differential Operation of the Diffpair

For a differential mode of operation we assume that the input common mode voltage is
constant, i.e. 𝑉in,p + 𝑉in,n = 𝑉CM. A differential input voltage 𝑣in then results in

𝑉in,p = 𝑉CM + 𝑣in
2

and
𝑉in,n = 𝑉CM − 𝑣in

2 .

For a small-signal differential drive the potential at the tail point stays constant and we can
treat it as a virtual ground. The output current on each side is then given by (neglecting
𝑔ds and 𝑔mb of 𝑀1 and 𝑀2)

𝑖out,p = 𝑔m1 (𝑣in
2)

and
𝑖out,n = 𝑔m2 (−𝑣in

2) .

40

https://iic-jku.github.io/analog-circuit-design/index.qmd.html

Usually we assume symmetry in the differential pair, so 𝑔m1 = 𝑔m2 = 𝑔m. The differential
output current 𝑖out is then given by

𝑖out = 𝑖out,p − 𝑖out,n = 𝑔m𝑣in (10)

We see in Equation 10 that the differential output current is simply the differential input
voltage multiplied by the 𝑔m of the individual transistor. We also note that the bottom
conductance 𝑔tail plays no role for the small-signal differential operation.

6.2 Common-Mode Operation of the Diffpair

Usually, the source conductance 𝑔tail is realized by a current source and ideally should be
𝑔tail = 0. If this is the case, then the output currents are not a function of the common-mode
input voltage, and (𝐼tail is set by the tail current source)

𝐼out,p = 𝐼out,n = 𝐼tail
2 .

However, if we assume a realistic tail current source then 𝑔tail > 0. For analysis we can
simply look at a half circuit since everything is symmetric. In order to simplify the analysis
a bit we remove all capacitors from the MOSFET small-signal model and set 𝑔ds = 𝑔mb = 0.
We arrive then at the small-signal equivalent circuit shown in Figure 17 (note that we set
𝑣in,p = 𝑣in,n = 𝑣in and 𝑖out,p = 𝑖out,n = 𝑖out under symmetry considerations).

Source: Article Notebook

Figure 17: Small-signal model of the differential pair half-circuit in common-mode operation.

41

https://iic-jku.github.io/analog-circuit-design/index.qmd.html

Source: Article Notebook

Formulating KVL for the input-side loop we get

𝑣in = 𝑣gs + 𝑖ds
𝑔tail

.

With 𝑖out = 𝑖ds = 𝑔m𝑣gs we arrive at

𝑖out = 𝑔m𝑔tail
𝑔m + 𝑔tail

𝑣in (11)

Interpreting Equation 11 we can distinguish the following extreme cases:

1. If 𝑔tail = 0 (ideal tail current source) then 𝑖out = 0, the common-mode voltage variation
from the input is suppressed and does not show up at the common-mode output current
(which is constant due to the ideal tail current source). This is usually the case that
we want to achieve.

2. If 𝑔tail = ∞ then 𝑖out = 𝑔m𝑣in, which means the output current is a function of the
MOSFET 𝑔m. If everything is perfectly matched, then the differential output current
is zero, but the common-mode output current changes according to the common-mode
input voltage. In special cases this can be a wanted behaviour, this configuration is
called a “pseudo-differential pair.”

7 A Basic 5-Transistor OTA

Suited with the knowledge of basic transitor operation (Section 2 and Section 3) and the
working knowledge of the current mirror (Section 4 and Section 5) as well as the differential
pair (Section 6) we can now start to design our first real circuit. A fundamental (simple)
circuit that is often used for basic tasks is the 5-transistor operational transconductance
amplifier (OTA). A circuit diagram of this 5T-OTA is shown in Figure 18.

Source: Article Notebook

42

https://iic-jku.github.io/analog-circuit-design/index.qmd.html
https://iic-jku.github.io/analog-circuit-design/index.qmd.html

Figure 18: The 5-transistor OTA.

Source: Article Notebook

The operation is as follows: 𝑀1,2 form a differential pair which is biased by the current
source 𝑀5. 𝑀5,6 form a current mirror, thus the input bias current 𝐼bias sets the bias
current in the OTA. The differential pair 𝑀1,2 is loaded by the current mirror 𝑀3,4 which
mirrors the output current of 𝑀1 to the right side. Here, the currents from 𝑀4 and 𝑀2 are
summed, and together with the conductance effective at the output node a voltage builds
up.

We note that 𝑀1,2 and 𝑀3,4 need to be symmetric, thus will have the same 𝑊 and 𝐿
dimensioning. 𝑀5,6 we scale accordingly to set the correct bias current in the OTA.

As this is an OTA the output is a current; if the load impedance is high (i.e., purely
capacitive, which is often the case in integrated circuits when driving MOSFET inputs)
then the voltage gain of the OTA can be high (of course, in this simple OTA it is limited).
With a high-impedance loading this OTA can provide a voltage output, and this is actually
how OTAs are mostly operated.

43

https://iic-jku.github.io/analog-circuit-design/index.qmd.html

7.1 Voltage Buffer with OTA

In order to design an OTA we need an application, and from this we need to derive the
circuit specifications. We want to use this OTA to realize a voltage buffer which lighly loads
a voltage source and can drive a large capacitive load. Such a configuration is often used
to, e.g., buffer a reference voltage that is needed (and thus loaded) by another circuit. The
block diagram of this configuration is shown in Figure 19.

Source: Article Notebook

Figure 19: A voltage buffer (based on OTA) driving a capacitive load.

Source: Article Notebook

If the voltage gain of the OTA is Figure 19 is high, then 𝑉out ≈ 𝑉in. We now want to design
an OTA for this application for the following spefication values (see Table 2). These values
are rather typical of what could be expected for such a buffer design.

Table 2: Voltage buffer specification

Specification Value Unit
Supply voltage 1.45 < 1.5 < 1.55 V
Temperature range (industrial) −40 < 27 < 125 degC
Load capacitance 𝐶load 50 fF
Input voltage range (for buffering 2/3 bandgap
voltage)

0.7 < 0.8 < 0.9 V

Signal bandwidth (3dB) > 10 MHz
Output voltage error < 3 %
Total output noise (rms) < 1 mVrms
Supply current (as low as possible) < 10 µA
Stability stable for rated 𝐶load
Turn-on time (settled to with 1%) < 10 µs
Externally provided bias current (nominal) 20 µA

44

https://iic-jku.github.io/analog-circuit-design/index.qmd.html
https://iic-jku.github.io/analog-circuit-design/index.qmd.html

7.2 Large-Signal Analysis of the OTA

The first step when receiving a design task is to look at the specifications, and see whether
they make sense. Detailed performance of the design will be the result of the circuit simu-
lation, but before we step into sizing we need to do a few simple calculations to (a) allows
to do back-of-the-envelope gauging if the specification makes sense, and (b) the derived
analytical equations will serve as guide for the sizing procedure.

• In terms of large-signal operation, we will now check whether the input and output
voltage range, as well as the settling time can be roughly met.

• When the input is at its maximum of 0.9 V, we see that we need to keep 𝑀1 in
saturation. We can calculate that 𝑉DS1 = 𝑉DD − |𝑉GS3| + 𝑉GS1 − 𝑉in = 1.45 − 0.6 +
0.6 − 0.9 = 0.55 V, which leaves enough margin.

• When the input is at its minimum of 0.7 V, we see that the 𝑉DS5 of 𝑀5 is calculated
as 𝑉DS5 = 𝑉in − 𝑉GS1 = 0.7 − 0.6 = 0.1 V, so this leaves little margin, but likely 𝑉GS1
will be smaller, so it should work out.

• For the output voltage, when the output voltage is on the high side, it leaves |𝑉DS4| =
𝑉DD − 𝑉out = 1.45 − 0.9 = 0.55 V, which is enough margin.

In summary, we think that we can make an NMOS-input OTA like the one in Figure 18
work for the required supply and input- and output voltages. If this would not work out,
we need to look for further options, like a PMOS-input OTA, or a NMOS/PMOS-input
OTA.

Another large-signal specification item that we can quickly check is the settling time. Under
slewing conditions, the complete bias current in the OTA is steered towards the output (try
to understand why this is the case), so when the output capacitor is fully discharged, and
we assume just a linear ramp due to constant-current charging of the output capacitor, the
settling time is

𝑇slew ≈ 𝐶load𝑉out
𝐼tail

= 50 ⋅ 10−15 ⋅ 1.3
10 ⋅ 10−6 = 6.5 ns

so this leaves plenty of margin for additional slow-signal settling due to the limited band-
width, as well as reducing the supply current.

The small-signal settling (assuming one pole at the bandwidth corner frequency) leads to
an approximate settling time (1% error corresponds to ≈ 5𝜏) of

𝑇slew ≈ 5
2𝜋𝑓c

= 5
2𝜋 ⋅ 1 ⋅ 10−6 = 0.8 𝜇s.

which also checks out.

7.3 Small-Signal Analysis of the OTA

In order to size the OTA components we need to derive how MOSFET parameters define
the performance. The important small-signal metrics are

45

• dc gain 𝐴0
• gain-bandwidth product (GBW)
• output noise

The specification for GBW is given in Table 2, the dc gain we have to calculate from the
voltage accuracy specification. For a voltage follower in the configuration shown in Figure 19
the voltage gain is given by

𝑉out
𝑉in

= 𝐴0
1 + 𝐴0

. (12)

So in order to reach an output voltage accuracy of at least 3% we need a dc gain of 𝐴0 >
30.2 dB. To allow for process and temperature variation we need to add a bit of extra gain
as margin.

7.3.1 OTA Small-Signal Transfer Function

In order to derive the governing equations for the OTA we will make a few simplifications:

• We will set 𝑔mb = 0 for all MOSFETs.
• We will further set 𝐶gd = 0 for all MOSFETs except for 𝑀4 where we expect a Miller

effect on this capacitor, and we could add its effect by increasing the capacitance
at the gate node of 𝑀3,4 (for background please see Section 19). Hoewever, as this
does not create a dominant pole in this circuit, we consider this a minor effect (see
Equation 15). Thus, only 𝐶gs34 is considered at the gate node of the current mirror
load.

• We assume 𝑔m ≫ 𝑔ds, so we set 𝑔ds1 = 𝑔ds3 = 0.
• The drain capacitance of 𝑀2 and 𝑀4, as well as the gate capacitance of 𝑀2 we can add

to the load capacitance 𝐶load. Note that 𝐶gs2 can be added because of the feedback
connection between the inverting input and the output. However, this is not shown in
the small-signal equivalent circuits below, because we are interested in the open-loop
transfer function.

The resulting small-signal equivalent circuit is shown in Figure 20.

Refresh MOSFET Small-Signal Model

Please review the MOSFET small-signal equivalent model in Figure 5 at this point.
For the PMOS just flip the model upside-down.

Source: Article Notebook

46

https://iic-jku.github.io/analog-circuit-design/index.qmd.html

Figure 20: 5-transistor OTA small-signal model.

Source: Article Notebook

We can further simplify the output side by recognizing that the impedance looking from the
output down we have 𝑔ds2 in series with 𝑔ds5 + 𝑔m12 (since we treat 𝑀1 as a common-gate
stage when looking from the output, and since it is loaded by a low impedance of 𝑔−1

m34
we can approximate the impedance looking into the source of 𝑀1 with 𝑔−1

m12). With the
approximation that 𝑔m ≫ 𝑔ds the parallel connection of 𝑔m12 and 𝑔ds5 is dominated by 𝑔m12
and series connection by 𝑔ds2. Therefore, we can move 𝑔ds2+𝑔ds4 in parallel to 𝐶load. Further,
assuming a differential drive with a virtual ground at the tailpoint we can remove 𝑔ds5. The
current source 𝑔m34𝑣gs34 is replace with the equivalent conductance 𝑔m34. This results in the
further simplified equivalent circuit shown in Figure 21.

Source: Article Notebook

Figure 21: 5-transistor OTA small-signal model with further simplifications.

Source: Article Notebook

47

https://iic-jku.github.io/analog-circuit-design/index.qmd.html
https://iic-jku.github.io/analog-circuit-design/index.qmd.html
https://iic-jku.github.io/analog-circuit-design/index.qmd.html

In the simplified circuit model in Figure 21 we can see that we have two poles in the circuit,
one at the gate note of 𝑀3,4, and one at the output. Realizing that 𝑣in,p = 𝑣in/2 and
𝑣in,n = −𝑣in/2 we can formulate KCL at the output node to

−𝑔m34𝑉gs34 − (−𝑔m12
𝑉in
2) − 𝑉out(𝑔ds2 + 𝑔ds4 + 𝑠𝐶load) = 0. (13)

We further realize that
𝑉gs34 = −𝑔m12

𝑉in
2

1
𝑔m34 + 𝑠𝐶gs34

. (14)

By combining Equation 13 and Equation 14 and after a bit of algebraic manipulation we
arrive at

𝐴(𝑠) = 𝑉out
𝑉in

= 𝑔m12
2

2𝑔m34 + 𝑠𝐶gs34
(𝑔m34 + 𝑠𝐶gs34)(𝑔ds2 + 𝑔ds4 + 𝑠𝐶load) . (15)

When we now inspect Equation 15 we can see that for low frequencies the gain is

𝐴(𝑠 → 0) = 𝐴0 = 𝑔m12
𝑔ds2 + 𝑔ds4

(16)

which is plausible, and confirms the requirement of a high impedance at the output node.
For very large frequencies we get

𝐴(𝑠 → ∞) = 𝑔m12
2𝑠𝐶load

(17)

which is essentially the behaviour of an integrator, and we can use Equation 17 to calculate
the frequency where the gain drops to 1:

𝑓ug = 𝑔m12
4𝜋𝐶load

when looking at Equation 15 we see that we have a dominant pole at 𝑠p and a pole-zero
doublet with 𝑠pd/𝑠zd:

𝑠p = −𝑔ds2 + 𝑔ds4
𝐶load

𝑠pd = − 𝑔m34
𝐶gs34

𝑠zd = −2𝑔m34
𝐶gs34

48

7.3.2 OTA Noise

For the noise analysis we ignore the pole-zero doublet due to 𝐶gs34 (we assume minor impact
due to this) and just consider the dominant pole. For the noise analysis at the output we
set the input signal to zero, and thus we arrive at the simplified small-signal circuit shown
in Figure 22.

Source: Article Notebook

Figure 22: 5-transistor OTA small-signal model for noise calculation.

Source: Article Notebook

We see that
𝑉 2

gs34 = 1
𝑔2

m34
(𝐼2

n1 + 𝐼2
n3) .

Noise Addition

Remember that uncorrelated noise quantities need to be power-summed (i.e., 𝐼2 =
𝐼2

1 + 𝐼2
2)!

We can then sum the output noise current 𝐼n as

𝐼2
n = 𝐼2

n2 + 𝐼2
n4 + 𝑔2

m34
1

𝑔2
m34

(𝐼2
n1 + 𝐼2

n3) = 2 (𝐼2
n12 + 𝐼2

n34) .

As a next step, let us rewrite the OTA transfer function 𝐴(𝑠) (see Equation 15) by getting
rid of the pole-zero doublet as a simplyfing assumption to get

𝐴′(𝑠) = 𝑔m12
𝑔ds2 + 𝑔ds4 + 𝑠𝐶load

. (18)

49

https://iic-jku.github.io/analog-circuit-design/index.qmd.html
https://iic-jku.github.io/analog-circuit-design/index.qmd.html

Inspecting Equation 18 we can interpret the OTA transfer function as a transconductor 𝑔m12
driving a load of 𝑌load = 𝑔ds2 + 𝑔ds4 + 𝑠𝐶load. We can thus redraw Figure 19 in the following
way, injecting the previously calculated noise current into the output node. The result is
shown in Figure 24.

Source: Article Notebook

Figure 23: Output impedance calculation of a voltage buffer.

Source: Article Notebook

Output Impedence of the Voltage Buffer

First we short the input terminal to ground and then we connect a current source 𝐼out
at the output terminal, see Figure 23. Since we can neglect the gate leakage current
into the inverting input terminal of the OTA, KCL at the output node is simply:

𝐼out + 𝑔m12 (−𝑉out) = 0

Thus, the output impedance is easily calculated.

𝑍out = 𝑉out
𝐼out

= 𝑉out
𝑔m12𝑉out

= 1
𝑔m12

Source: Article Notebook

50

https://iic-jku.github.io/analog-circuit-design/index.qmd.html
https://iic-jku.github.io/analog-circuit-design/index.qmd.html
https://iic-jku.github.io/analog-circuit-design/index.qmd.html

Figure 24: A voltage buffer redrawn for noise analysis.

Source: Article Notebook

We see that the feedback around the transconductor 𝑔m12 creates an impedance of 1/𝑔m12.
We can now calculate the effective load conductance of

𝑌 ′
load = 𝑔ds2 + 𝑔ds4 + 𝑠𝐶load + 𝑔m12 ≈ 𝑔m12 + 𝑠𝐶load. (19)

The output noise voltage is then (using Equation 1)

𝑉 2
n,out(𝑓) = 𝐼2

n
|𝑌 ′

load|2 = 𝐼2
n

𝑔2
m12 + (2𝜋𝑓𝐶load)22 = 8𝑘𝑇 (𝛾12𝑔m12 + 𝛾34𝑔m34)

𝑔2
m12 + (2𝜋𝑓𝐶load)2 .

We can use the identity Equation 7 to calculate the rms output noise to

𝑉 2
n,out,rms = ∫

∞

0
𝑉 2

n,out(𝑓)𝑑𝑓 = 𝑘𝑇
𝐶load

(2𝛾12 + 2𝛾34
𝑔m34
𝑔m12

) . (20)

Inspecting Equation 20 we can see that the integrated output noise is the 𝑘𝑇 /𝐶 noise of the
output load capacitor, enhanced by the 𝛾12 of the input differential pair, plus a (smaller)
contribution of the current mirror load 𝑀3,4. Intuitevly, this result makes sense.

Exercise: Derivation of 5T-OTA Performance

Please take your time and carefully go through the explanations and derivations for the
5-transistor-OTA in Section 7.2 and Section 7.3. Try to do the calculations yourself;
if you get stuck, review the previous chapters.

51

https://iic-jku.github.io/analog-circuit-design/index.qmd.html

7.4 5T-OTA Sizing

Outfitted with the governing equations derived in Section 7.3 we can now size the MOSFETs
in the OTA, we remember that we have to size 𝑀1,2 and 𝑀3,4 equally.

First, we need to select a proper 𝑔m/𝐼D for the MOSFET. Remembering Section 3 we see
that for the input differential pair we should go for a large 𝑔m, thus we select a 𝑔m/𝐼D = 10.
As 𝑔ds of 𝑀2 could limit the dc gain (Equation 16) we go with a rather long 𝐿 = 5 𝜇m.
For current sources a small 𝑔m/𝐼D is a good idea, so we start with 𝑔m/𝐼D = 5 (because we
can not go too low because of 𝑉ds,sat) and also an 𝐿 = 5 𝜇m. The 𝑔m/𝐼D is also useful to
estimate the required drain-source voltage to keep a MOSFET in saturation (i.e., keep the
𝑔ds small) with this approximate relationship:

𝑉ds,sat = 2
𝑔m/𝐼D

(21)

Exercise: 5T-OTA Sizing

Please size the 5T-OTA according to the previous 𝑔m/𝐼D and 𝐿 suggestions. Please
calculate the 𝑊 of 𝑀1−6 and the total supply current. Please check wether gain error,
total output noise, and turn-on settling is met with the calculated devices sizes and
bias currents.

The sizing procedure and its calculation are best performed in a Jupyter notebook, as we
can easily look up the exact data from the pre-computed tables:

Solution: 5T-OTA Sizing

8 Sizing for Basic 5T-OTA
Copyright 2024 Harald Pretl
Licensed under the Apache License, Version 2.0 (the “License”); you may not use this
file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0

Read table data
from pygmid import Lookup as lk
import numpy as np
lv_nmos = lk('sg13_lv_nmos.mat')
lv_pmos = lk('sg13_lv_pmos.mat')
List of parameters: VGS, VDS, VSB, L, W, NFING, ID, VT, GM, GMB, GDS, CGG, CGB, CGD, CGS, CDD, CSS, STH, SFL
If not specified, minimum L, VDS=max(vgs)/2=0.9 and VSB=0 are used

52

Define the given parameters as taken from the specification table or inital guesses
c_load = 50e-15
gm_id_m12 = 10
gm_id_m34 = 5
gm_id_m56 = 5
l_12 = 5
l_34 = 5
l_56 = 5
f_bw = 10e6
i_total_limit = 10e-6
i_bias_in = 20e-6
output_voltage = 1.3
vin_min = 0.7
vin_max = 0.9
vdd_min = 1.45
vdd_max = 1.55

We get the required gm of M1/2 from the bandwidth requirement
We add a factor of 3 to allow for PVT variation plus additional MOSFET parasitic loading
gm_m12 = f_bw * 3 * 4*np.pi*c_load
print('gm12 =', gm_m12/1e-3, 'mS')

gm12 = 0.01884955592153876 mS

Since we know gm12 and the gmid we can calculate the bias current
id_m12 = gm_m12 / gm_id_m12
i_total = 2*id_m12
print('i_total (exact) =', i_total/1e-6, 'µA')
we round to 0.5µA bias currents
i_total = max(round(i_total / 1e-6 * 2) / 2 * 1e-6, 0.5e-6)
id_m12 = i_total/2

print('i_total (rounded) =', i_total/1e-6, 'µA')
if i_total < i_total_limit:

print('[info] power consumption target is met!')
else:

print('[info] power consumption target is NOT met!')

i_total (exact) = 3.7699111843077517 µA
i_total (rounded) = 4.0 µA
[info] power consumption target is met!

53

We calculate the dc gain
gm_gds_m12 = lv_nmos.lookup('GM_GDS', GM_ID=gm_id_m12, L=l_12, VDS=0.75, VSB=0)
gm_gds_m34 = lv_pmos.lookup('GM_GDS', GM_ID=gm_id_m34, L=l_34, VDS=0.75, VSB=0)

gds_m12 = gm_m12 / gm_gds_m12
gm_m34 = gm_id_m34 * i_total/2
gds_m34 = gm_m34 / gm_gds_m34

a0 = gm_m12 / (gds_m12 + gds_m34)
print('a0 =', 20*np.log10(a0), 'dB')

a0 = 34.78458740352468 dB

We calculate the MOSFET capacitance which adds to Cload, to see the impact on the BW
gm_cgs_m12 = lv_nmos.lookup('GM_CGS', GM_ID=gm_id_m12, L=l_12, VDS=0.75, VSB=0)
gm_cdd_m12 = lv_nmos.lookup('GM_CDD', GM_ID=gm_id_m12, L=l_12, VDS=0.75, VSB=0)
gm_cdd_m34 = lv_pmos.lookup('GM_CDD', GM_ID=gm_id_m34, L=l_34, VDS=0.75, VSB=0)

c_load_parasitic = abs(gm_m12/gm_cgs_m12) + abs(gm_m12/gm_cdd_m12) + abs(gm_m34/gm_cdd_m34)
print('additional load capacitance =', c_load_parasitic/1e-15, 'fF')

f_bw = gm_m12 / (4*np.pi * (c_load + c_load_parasitic))
print('-3dB bandwidth incl. parasitics =', f_bw/1e6, 'MHz')

additional load capacitance = 54.92854674560976 fF
-3dB bandwidth incl. parasitics = 14.295442437000684 MHz

We can now look up the VGS of the MOSFET
vgs_m12 = lv_nmos.look_upVGS(GM_ID=gm_id_m12, L=l_12, VDS=0.75, VSB=0.0)
vgs_m34 = lv_pmos.look_upVGS(GM_ID=gm_id_m34, L=l_34, VDS=0.75, VSB=0.0)
vgs_m56 = lv_nmos.look_upVGS(GM_ID=gm_id_m56, L=l_56, VDS=0.75, VSB=0.0)

print('vgs_12 =', vgs_m12, 'V')
print('vgs_34 =', vgs_m34, 'V')
print('vgs_56 =', vgs_m56, 'V')

vgs_12 = 0.36710119710062455 V
vgs_34 = 0.7287454603526495 V
vgs_56 = 0.5912200307058603 V

Calculate settling time due to slewing with the calculated bias current
t_slew = (c_load + c_load_parasitic) * output_voltage / i_total
print('slewing time =', t_slew/1e-6, 'µs')
t_settle = 5/(2*np.pi*f_bw)
print('settling time =', t_settle/1e-6, 'µs')

54

slewing time = 0.034101777692323185 µs
settling time = 0.055666322953376014 µs

Calculate voltage gain error
gain_error = a0 / (1 + a0)
print('voltage gain error =', (gain_error-1)*100, '%')

voltage gain error = -1.7902967715882068 %

Calculate total rms output noise
sth_m12 = lv_nmos.lookup('STH_GM', VGS=vgs_m12, L=l_12, VDS=0.75, VSB=0) * gm_m12
gamma_m12 = sth_m12/(4*1.38e-23*300*gm_m12)

sth_m34 = lv_pmos.lookup('STH_GM', VGS=vgs_m34, L=l_34, VDS=0.75, VSB=0) * gm_m34
gamma_m34 = sth_m34/(4*1.38e-23*300*gm_m34)

output_noise_rms = 1.38e-23*300 / (c_load + c_load_parasitic) * (2*gamma_m12 + 2*gamma_m34 * gm_m34/gm_m12)
print('output noise (rms) =', output_noise_rms/1e-6, 'µV')

output noise (rms) = 0.12543377043178017 µV

Calculate all widths
id_w_m12 = lv_nmos.lookup('ID_W', GM_ID=gm_id_m12, L=l_12, VDS=vgs_m12, VSB=0)
w_12 = id_m12 / id_w_m12
w_12_round = max(round(w_12*2)/2, 0.5)
print('M1/2 W =', w_12, 'um, rounded W =', w_12_round, 'um')

id_m34 = id_m12
id_w_m34 = lv_pmos.lookup('ID_W', GM_ID=gm_id_m34, L=l_34, VDS=vgs_m34, VSB=0)
w_34 = id_m34 / id_w_m34
w_34_round = max(round(w_34*2)/2, 0.5)
print('M3/4 W =', w_34, 'um, rounded W =', w_34_round, 'um')

id_w_m5 = lv_nmos.lookup('ID_W', GM_ID=gm_id_m56, L=l_56, VDS=vgs_m56, VSB=0)
w_5 = i_total / id_w_m5
w_5_round = max(round(w_5*2)/2, 0.5)
print('M5 W =', w_5, 'um, rounded W =', w_5_round, 'um')
w_6 = w_5_round * i_bias_in / i_total
print('M6 W =', w_6, 'um')

M1/2 W = 1.7713641972645868 um, rounded W = 2.0 um
M3/4 W = 1.641014110777885 um, rounded W = 1.5 um
M5 W = 0.7351148286825442 um, rounded W = 0.5 um
M6 W = 2.5000000000000004 um

55

Print out final design values
print('5T-OTA dimensioning:')
print('--------------------')
print('M1/2 W=', w_12_round, ', L=', l_12)
print('M3/4 W=', w_34_round, ', L=', l_34)
print('M5 W=', w_5_round, ', L=', l_56)
print('M6 W=', w_6, ', L=', l_56)
print()
print('5T-OTA performance summary:')
print('---------------------------')
print('supply current =', i_total/1e-6, 'µA')
print('output noise =', output_noise_rms/1e-6, 'µVrms')
print('voltage gain error =', (gain_error-1)*100, '%')
print('-3dB bandwidth incl. parasitics =', f_bw/1e6, 'MHz')
print('turn-on time (slewing+settling) =', (t_slew+t_settle)/1e-6, 'µs')
print()
print('5T-OTA bias point check:')
print('------------------------')
print('headroom M1 =', vdd_min-vgs_m34+vgs_m12-vin_max, 'V')
print('headroom M4 =', vdd_min-vin_max, 'V')
print('headroom M5 =', vin_min-vgs_m12, 'V')

5T-OTA dimensioning:

M1/2 W= 2.0 , L= 5
M3/4 W= 1.5 , L= 5
M5 W= 0.5 , L= 5
M6 W= 2.5000000000000004 , L= 5

5T-OTA performance summary:

supply current = 4.0 µA
output noise = 0.12543377043178017 µVrms
voltage gain error = -1.7902967715882068 %
-3dB bandwidth incl. parasitics = 14.295442437000684 MHz
turn-on time (slewing+settling) = 0.08976810064569919 µs

5T-OTA bias point check:

headroom M1 = 0.188355736747975 V
headroom M4 = 0.5499999999999999 V
headroom M5 = 0.3328988028993754 V

Source: Sizing for Basic 5T-OTA

56

https://iic-jku.github.io/analog-circuit-design/sizing/sizing_basic_ota-preview.html#cell-0

8.1 5T-OTA Simulation

With the initial sizing of the MOSFETs of the 5T-OTA done, we can design the 5T-OTA
circuit and setup a simulation testbench to check the performance parameters. Since this is
the first time we draw a more complex schematic, and use a hierarchical design, we should
note that drawing a schematic is an art, and there exists a set of rules and recommendations
how to name pins, how to use annotations, and so on. Please read Section 23 before you
start into your design work.

Exercise: 5T-OTA Design and Testbench

Please design the circuit of the 5T-OTA. Put the OTA circuit in a separate schematic,
create a symbol for it, and use this symbol in a testbench you create in Xschem for
this 5T-OTA used as a voltage buffer as schown in Figure 19. Use typical conditions
for the simulation, and check how well the specification in Table 2 is met, and how
well the derivations in Section 7.2 and Section 7.3 fit to the simulation results.
If you get stuck, you can find the testbench and 5T-OTA schematic here (for the
small-signal analysis) and here (for the large-signal settling simulation).

8.2 5T-OTA Simulation versus PVT

As you have seen in Section 8.1 running simulations by hand is tedious. When we want to
check the overall performance, we have to run many simulations over various conditions:

1. The supply voltage of the circuit has tolerances, and thus we need to check the per-
formance against this variation.

2. The temperature at which the circuit is operated is likely changing. Also the perfor-
mance against this has to be verified.

3. When manufacturing the wafers random variations in various process parameters lead
to changed parameters of the integrated circuit components. In order to check for
this effect, wafer foundries provide model files which shall cover these manufacturing
excursions. Simplified, this leads to a slower or faster MOSFET, and usually NMOS
and PMOS are not correlated, so we have the process corners SS, SF, TT, FS, and
FF. So far, we have only used the TT models in our simulations.

The variations listed in the previous list are abbreviated as PVT (process, voltage, temper-
ature) variations. In order to finalize a circuit all combinations of these (plus the variations
in operating conditions like input voltage) have to be simulated. As you can imagine, this
leads to a huge number of simulations, and simulation results which have to be evaluated
for pass/fail.

There are two options how to tackle this efficiently:

1. As an experienced designer you have a very solid understanding of the circuit, plus
based on the analytic equations you can identify which combination of operating

57

./xschem/ota-5t_tb-ac.svg
./xschem/ota-5t_tb-ac.svg

conditions will lead to a worst case performance. Thus, you can drastically reduce the
number of corners to simulate, and you run them by hand.

2. You are using a framework which highly automates this task of running a plethora
of different simulations and evaluating the outcome. These frameworks are called
simulation runners.

Luckily, there are open-source versions of simulation runners available, and we will use
CACE in this lecture. CACE is written in Python and allows to setup a datasheet in
YAML which defines the simulation problem and the performance parameters to evaluate
against which limits. The resulting simulations are then run in parallel and the simulation
data is evaluated and summarized in various forms.

There is a CACE setup available for our 5T-OTA. The datasheet describes the operating
conditions and the simulations tasks. For each simulation a testbench template is needed,
this one is used for ac simulations, this one is used for noise simulation, and this one is used
for transient simulation.

After a successul run, a documentation is automatically generated. The result of a full run
of this OTA design is presented here:

Note 1: CACE Summary for 5T-OTA

9 CACE Summary for ota-5t
netlist source: schematic

Parameter Tool Result
Min

Limit
Min

Value

Typ
Tar-
get

Typ
Value

Max
Limit

Max
Value Status

Output
voltage
ratio

ngspice gain 0.97
V/V

0.987
V/V

any 1.000
V/V

1.03
V/V

1.006
V/V

Pass
�

Bandwidth ngspice bw 10e6
Hz

15551000.000
Hz

any 26912100.000
Hz

any 34051700.000
Hz

Pass
�

Output
noise

ngspice noise any 0.308
mV

any 0.371
mV

1
mV

0.455
mV

Pass
�

Settling
time

ngspice tsettle any 0.135
us

any 0.142
us

10
us

0.155
us

Pass
�

58

https://github.com/efabless/cace
https://yaml.org
./cace/voltage-buffer-ota.yaml
./cace/templates/ota-5t-ac.sch
./cace/templates/ota-5t-noise.sch
./cace/templates/ota-5t-tran.sch
./xschem/ota-5t.svg

9.1 Plots
9.2 gain_vs_temp

Figure 25: gain_vs_temp

59

9.3 gain_vs_vin

Figure 26: gain_vs_vin

60

9.4 gain_vs_vdd

Figure 27: gain_vs_vdd

61

9.5 gain_vs_corner

Figure 28: gain_vs_corner

62

9.6 bw_vs_temp

Figure 29: bw_vs_temp

63

9.7 bw_vs_vin

Figure 30: bw_vs_vin

64

9.8 bw_vs_vdd

Figure 31: bw_vs_vdd

65

9.9 bw_vs_corner

Figure 32: bw_vs_corner

66

9.10 noise_vs_temp

Figure 33: noise_vs_temp

67

9.11 noise_vs_vin

Figure 34: noise_vs_vin

68

9.12 noise_vs_vdd

Figure 35: noise_vs_vdd

69

9.13 noise_vs_corner

Figure 36: noise_vs_corner

70

9.14 settling_vs_temp

Figure 37: settling_vs_temp

71

9.15 settling_vs_vin

Figure 38: settling_vs_vin

72

9.16 settling_vs_vdd

Figure 39: settling_vs_vdd

73

9.17 settling_vs_corner

Figure 40: settling_vs_corner

9.17.1 PVT Simulation Analysis

Looking at the CACE report in Note 1 we see that (luckily) the specifiction is met for all
parameters. This is great news! We now have a design that we carefully simulated across
PVT and other corners, and which is ready for layout. Once we have the layout ready,
we can extract the wiring parasitics (𝑅 and 𝐶) as well as other layout-dependent effects
like well proximity. Using this augmented netlist we can then again use CACE to check
performance across conditions and parameter variations, and if we still pass all specification
points then our design is finished.

10 Cascode Stage

As we have seen in Section 7 the performance of the OTA is generally quite acceptable (see
Table 2), but we might want to aim for better output voltage accuracy. As our analysis
has shown the output voltage tolerance is limited by the open-loop dc gain 𝐴0 of the OTA
(see Equation 12), which in turn is limited by the output conductance of 𝑀2 and 𝑀4 in
Figure 18, which is also confirmed by the analytical result in Equation 16.

74

https://global.oup.com/us/companion.websites/9780195170153/pdf/proximityeffectmodels.pdf

During the sizing procedure we have seen that the achievable 𝑔m/𝑔ds ratio of a single MOS-
FET is limited, even if we increase 𝐿. We are thus searching for a better option, and here
(local) feedback in form of a cascode comes to help.

For analysis of a cascode, we use the following single-transistor stage shown in Figure 41.

Source: Article Notebook

Figure 41: A MOSFET cascode circuit.

Source: Article Notebook

In order to derive the operation of the cascode analytically, we draw the small-signal equiv-
alent circuit in Figure 42. We assume that 𝑉B is a low-ohmic bias voltage, thus we replace
it by ac ground. We further set 𝑔mb = 0.

Source: Article Notebook

75

https://iic-jku.github.io/analog-circuit-design/index.qmd.html
https://iic-jku.github.io/analog-circuit-design/index.qmd.html
https://iic-jku.github.io/analog-circuit-design/index.qmd.html

Figure 42: The MOSFET cascode small-signal model.

Source: Article Notebook

Since the gate is assumed at a fixed potential, we can put 𝐶gs in parallel to 𝐺S as 𝐺∗
S =

𝐺S + 𝑠𝐶gs, and we can put 𝐶gd in parallel to 𝐺D as 𝐺∗
D = 𝐺D + 𝑠𝐶gd. As a result we will

disregard these capacitors for now, and just consider 𝐺S and 𝐺D.

Source: Article Notebook

76

https://iic-jku.github.io/analog-circuit-design/index.qmd.html
https://iic-jku.github.io/analog-circuit-design/index.qmd.html

Figure 43: The simplified MOSFET cascode small-signal model.

Source: Article Notebook

10.1 Cascode Output Impedance

As a first step, we want to calculate the output impedance at the drain of the MOSFET
(i.e., looking into the drain). For this, we replace 𝐺D with a current source. The resulting
small-signal equivalent circuit is shown in Figure 44.

Source: Article Notebook

77

https://iic-jku.github.io/analog-circuit-design/index.qmd.html
https://iic-jku.github.io/analog-circuit-design/index.qmd.html

Figure 44: The simplified MOSFET cascode small-signal model for calculation of the output
impedance.

Source: Article Notebook

We realize that 𝑖out flows through 𝐺S and drops 𝑣gs (note the sign):

𝑣gs = −𝑖out
𝐺S

Further, 𝑣out = −𝑣gs + 𝑣ds. Calculating KCL at the output node results in

𝑖out − 𝑔m𝑣gs − 𝑔ds𝑣ds = 0.

Using the previously found identities, and after a bit of algebraic manipulations we arrive
at

𝑔out = 𝑖out
𝑣out

= 𝑔ds
1 + 𝑔m+𝑔ds

𝐺S

= 𝑔ds ⋅ 𝐺S
𝐺S + 𝑔m + 𝑔ds

(22)

We find that if 𝐺S = 0 (an open) then 𝑔out = 0, and if 𝐺S = ∞ (a short) then 𝑔out = 𝑔ds.
We can calculate the benefits of a cascode if we assume we put a cascode on top of a
common-source transitor stage (thus 𝐺S = 𝑔′

ds) and get

𝑔out = 𝑔ds ⋅ 𝑔′
ds

𝑔′
ds + 𝑔m + 𝑔ds

≈ 𝑔′
ds

𝑔ds
𝑔m

. (23)

78

https://iic-jku.github.io/analog-circuit-design/index.qmd.html

Benefit of Cascode (Output)

The output impedance of the lower MOSFET (𝑔′
ds) is reduced by the self-gain of the

cascode transistor! This is a powerful technique to increase the output impedance of
a transistor stage by cascoding, much better than increasing 𝐿.

10.2 Cascode Input Impedance

To the calculate the input impedance of a cascode (i.e., looking into the source) we replace 𝐺S
with a current source. The resulting small-signal equivalent circuit is shown in Figure 45.

Source: Article Notebook

Figure 45: The simplified MOSFET cascode small-signal model for calculation of the input
impedance.

Source: Article Notebook

We note that 𝑣gs = −𝑣in and that 𝑖in flows through 𝐺D, resulting in 𝑣D = 𝑖in/𝐺D. Note that
𝑣ds = 𝑣D − 𝑣in. Formulating KCL at the input node results in

𝑖in + 𝑔ds𝑣ds + 𝑔m𝑣gs = 0.

79

https://iic-jku.github.io/analog-circuit-design/index.qmd.html
https://iic-jku.github.io/analog-circuit-design/index.qmd.html

After some manipulation we find that

𝑔in = 𝑖in
𝑣in

= (𝑔m + 𝑔ds) ⋅ 𝐺D
𝑔ds + 𝐺D

. (24)

Setting 𝐺D = 0 (an open) results in 𝑔in = 0 as well, so the input impedance of the cascode
is very large when the drain impedance is large.

However, setting 𝐺D = ∞ (a short or low-ohmic impedance) results in the well-known result
of 𝑔in = 𝑔m + 𝑔ds ≈ 𝑔m, which means that the input impedance looking into a cascode is
approximately 1/𝑔m.

Benefit of Cascode (Input)

This has the practical benefit that a capacitance connected at this noise results in
a high-frequency pole, which is often not critical in terms of stability. Further, the
voltage swing at a cascode input node is small due to the often small impedance, and
this minimizes the Miller effect at connected inter-node capacitors (see Section 19).

11 Improved OTA

With the new learned know-how of the cascode stage we can set out to improve our original
basic 5T-OTA design. Essentially this means to add cascodes to 𝑀2 and 𝑀4 in Figure 18.
For symmetry reasons we will add cascodes to both sides, and the resulting schematic is
shown in Figure 46.

Source: Article Notebook

80

https://iic-jku.github.io/analog-circuit-design/index.qmd.html

Figure 46: The improved OTA based on the 5T-OTA design.

Source: Article Notebook

The transistor name appendix “C” indicates a cascode device sitting atop its base transistor.
The bias voltage 𝑉bias1 is referenced to 𝑉SS, the bias voltage 𝑉bias3 is referenced to 𝑉DD, and
the floating bias voltage 𝑉bias2 creates a voltage bias for 𝑀1C and 𝑀2C relative to the tail
point, so that the 𝑉DS of 𝑀1,2 stays constant with a changing common-mode input voltage.

Cascode Bias Voltage Generation

It is critically import for a stable performance across PVT that the bias voltages for the
cascode gates are created in a manner that tracks variations with process, temperature,
and supply voltage!

The current mirrors constructed out of 𝑀5/5C,6/6C and 𝑀3/3C,4/4C are a special kind of

81

https://iic-jku.github.io/analog-circuit-design/index.qmd.html

cascoded current mirror for low-voltage operation. This type is very often used, as
it forces the 𝑉GS and 𝑉DS of 𝑀5,6 (and 𝑀3,4) to be equal, so the current mirror ratio is
independent of 𝑔ds. Further, by properly selecting the bias voltages of the cascode a low-
voltage operation is achieved as 𝑉DS can be minimized, allowing even triode operation of
the current-mirror MOSFETs (as, noted above, a large 𝑔ds is not a big issue).

A simplified small-signal gain calculation of this improved OTA uses the result of Equa-
tion 16 and Equation 23 to arrive at the approximate dc gain of

𝐴0 ≈ 𝑔m12
𝑔ds2

𝑔ds2C
𝑔m2C

+ 𝑔ds4
𝑔ds4C
𝑔m4C

(25)

leading to a significant boost in dc gain due to cascoding. We will use this increased gain
to reduce the 𝐿 of all MOSFET to

1. save area (smaller 𝐿 will lead to smaller 𝑊 for a given 𝑊/𝐿 ratio) and
2. will push the additional poles and zeros at the inner nodes of the cascoded transistors

(e.g., the connection of the drain of 𝑀5 to the source of 𝑀5C) to higher frequencies
to result in stable behaviour and a reasonable gain transfer function (too many poles
and zeros in the passband of the amplifier create many issues with stability margin).

11.1 Sizing the Improved OTA

Like the sizing of the 5T-OTA in Section 7.4 we will again use the 𝑔m/𝐼D method using a
Python notebook. Instead of using 𝐿 = 5 𝜇m we will this time use a reduced 𝐿 = 0.5 𝜇m
for 𝑀1/1C,2/2C,3/3C,4/4C (for speed reasons) and 𝐿 = 1 𝜇m for 𝑀5/5C,6/6C for better common-
mode rejection (the tail current mirror is less critical in terms of speed and stability).

We set 𝑔m/𝐼D = 13 across the board for a good trade-off between speed, current efficiency,
and voltage headroom for the MOSFETs (this is now way more critical than in the basic
5T-OTA as we stack now double as many MOSFET at the same supply voltage). Please
look at Section 3 to confirm this choice.

Improved OTA Sizing

12 Sizing for Basic (Improved) OTA
Copyright 2024 Harald Pretl
Licensed under the Apache License, Version 2.0 (the “License”); you may not use this
file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0

82

Read table data
from pygmid import Lookup as lk
import numpy as np
lv_nmos = lk('sg13_lv_nmos.mat')
lv_pmos = lk('sg13_lv_pmos.mat')
List of parameters: VGS, VDS, VSB, L, W, NFING, ID, VT, GM, GMB, GDS, CGG, CGB, CGD, CGS, CDD, CSS, STH, SFL
If not specified, minimum L, VDS=max(vgs)/2=0.9 and VSB=0 are used

Define the given parameters as taken from the specification table or inital guesses
c_load = 50e-15
gm_id_m12 = 13
gm_id_m12c = 13
gm_id_m34 = 13
gm_id_m34c = 13
gm_id_m56 = 13
gm_id_m56c = 13
l_12 = 0.5
l_12c = 0.5
l_34 = 0.5
l_34c = 0.5
l_56 = 1
l_56c = 1
f_bw = 10e6
i_total_limit = 10e-6
i_bias_in = 20e-6
output_voltage = 1.3
vin_min = 0.7
vin_max = 0.9
vdd_min = 1.45
vdd_max = 1.55
vds_headroom = 0.2

We get the required gm of M1/2 from the bandwidth requirement
We add a factor of 3 to allow for PVT variation plus additional MOSFET parasitic loading
We also add an additional factor of 2 to get more dc gain (and there is power still in the budget)
gm_m12 = f_bw * 3 * 4*np.pi*c_load * 3
print('gm12 =', gm_m12/1e-3, 'mS')

gm12 = 0.05654866776461628 mS

83

Since we know gm12 and the gmid we can calculate the bias current
id_m12 = gm_m12 / gm_id_m12
i_total = 2*id_m12
print('i_total (exact) =', i_total/1e-6, 'µA')
we round to 0.5µA bias currents
i_total = max(round(i_total / 1e-6 * 2) / 2 * 1e-6, 0.5e-6)
here is a manual override to set the current; we keep a reserve of 2µA for bias branch
i_total = 8e-6
id_m12 = i_total/2

print('i_total (rounded) =', i_total/1e-6, 'µA')
if i_total < i_total_limit:

print('[info] power consumption target is met!')
else:

print('[info] power consumption target is NOT met!')

i_total (exact) = 8.699795040710196 µA
i_total (rounded) = 8.0 µA
[info] power consumption target is met!

We calculate the dc gain
gm_gds_m12 = lv_nmos.lookup('GM_GDS', GM_ID=gm_id_m12, L=l_12, VDS=vds_headroom, VSB=2*vds_headroom)
gm_gds_m12c = lv_nmos.lookup('GM_GDS', GM_ID=gm_id_m12c, L=l_12c, VDS=vds_headroom, VSB=3*vds_headroom)
gm_gds_m34 = lv_pmos.lookup('GM_GDS', GM_ID=gm_id_m34, L=l_34, VDS=vds_headroom, VSB=0)
gm_gds_m34c = lv_pmos.lookup('GM_GDS', GM_ID=gm_id_m34c, L=l_34c, VDS=vds_headroom, VSB=vds_headroom)
conductance of lower cascoded differential pair
gds_m12 = gm_m12 / gm_gds_m12
gds_m12_casc = gds_m12 / gm_gds_m12c
conductance of upper cascoded current mirror
gm_m34 = gm_id_m34 * i_total/2
gds_m34 = gm_m34 / gm_gds_m34
gds_m34_casc = gds_m34 / gm_gds_m34c

print('gds_12 =', gds_m12/1e-6, 'µs')
print('gm_12c/gds_12c =',gm_gds_m12c)
print('gds_34 =', gds_m34/1e-6, 'µs')
print('gm_34c/gds_34c =', gm_gds_m34c)

a0 = gm_m12 / (gds_m12_casc + gds_m34_casc)
print('a0 =', 20*np.log10(a0), 'dB')

gds_12 = 4.025519543033504 µs
gm_12c/gds_12c = 13.377388738589055
gds_34 = 2.031305802765517 µs

84

gm_34c/gds_34c = 24.877072747451322
a0 = 43.394151889182424 dB

We calculate the MOSFET capacitance which adds to Cload, to see the impact on the BW
gm_cgs_m12 = lv_nmos.lookup('GM_CGS', GM_ID=gm_id_m12, L=l_12, VDS=vds_headroom, VSB=2*vds_headroom)
gm_cdd_m12c = lv_nmos.lookup('GM_CDD', GM_ID=gm_id_m12c, L=l_12c, VDS=vds_headroom, VSB=3*vds_headroom)
gm_cdd_m34c = lv_pmos.lookup('GM_CDD', GM_ID=gm_id_m34c, L=l_34c, VDS=vds_headroom, VSB=vds_headroom)

c_load_parasitic = abs(gm_m12/gm_cgs_m12) + abs(gm_m12/gm_cdd_m12c) + abs(gm_m34/gm_cdd_m34c)
print('additional load capacitance =', c_load_parasitic/1e-15, 'fF')

f_bw = gm_m12 / (4*np.pi * (c_load + c_load_parasitic))
print('-3dB bandwidth incl. parasitics =', f_bw/1e6, 'MHz')

additional load capacitance = 5.4535230735668225 fF
-3dB bandwidth incl. parasitics = 81.14903707795307 MHz

We can now look up the VGS of the MOSFET
vgs_m12 = lv_nmos.look_upVGS(GM_ID=gm_id_m12, L=l_12, VDS=vds_headroom, VSB=2*vds_headroom)
vgs_m12c = lv_nmos.look_upVGS(GM_ID=gm_id_m12c, L=l_12c, VDS=vds_headroom, VSB=3*vds_headroom)
vgs_m34 = lv_pmos.look_upVGS(GM_ID=gm_id_m34, L=l_34, VDS=vds_headroom, VSB=0.0)
vgs_m34c = lv_pmos.look_upVGS(GM_ID=gm_id_m34c, L=l_34c, VDS=vds_headroom, VSB=vds_headroom)
vgs_m56 = lv_nmos.look_upVGS(GM_ID=gm_id_m56, L=l_56, VDS=vds_headroom, VSB=0.0)
vgs_m56c = lv_nmos.look_upVGS(GM_ID=gm_id_m56c, L=l_56c, VDS=vds_headroom, VSB=vds_headroom)

print('vgs_12 =', vgs_m12, 'V')
print('vgs_12c =', vgs_m12c, 'V')
print('vgs_34 =', vgs_m34, 'V')
print('vgs_34c =', vgs_m34c, 'V')
print('vgs_56 =', vgs_m56, 'V')
print('vgs_56c =', vgs_m56c, 'V')

vgs_12 = 0.4363351047848177 V
vgs_12c = 0.4575885897698743 V
vgs_34 = 0.4745538724103232 V
vgs_34c = 0.5115503281076889 V
vgs_56 = 0.35764913382485647 V
vgs_56c = 0.3835723411901689 V

Calculate settling time due to slewing with the calculated bias current
t_slew = (c_load + c_load_parasitic) * output_voltage / i_total
print('slewing time =', t_slew/1e-6, 'µs')
t_settle = 5/(2*np.pi*f_bw)
print('settling time =', t_settle/1e-6, 'µs')

85

slewing time = 0.009011197499454612 µs
settling time = 0.009806335898909592 µs

Calculate voltage gain error
gain_error = a0 / (1 + a0)
print('voltage gain error =', (gain_error-1)*100, '%')

voltage gain error = -0.6719920439173688 %

Calculate total rms output noise
sth_m12 = lv_nmos.lookup('STH_GM', VGS=vgs_m12, L=l_12, VDS=vds_headroom, VSB=2*vds_headroom) * gm_m12
gamma_m12 = sth_m12/(4*1.38e-23*300*gm_m12)

sth_m34 = lv_pmos.lookup('STH_GM', VGS=vgs_m34, L=l_34, VDS=vds_headroom, VSB=0) * gm_m34
gamma_m34 = sth_m34/(4*1.38e-23*300*gm_m34)

output_noise_rms = 1.38e-23*300 / (c_load + c_load_parasitic) * (2*gamma_m12 + 2*gamma_m34 * gm_m34/gm_m12)
print('output noise (rms) =', output_noise_rms/1e-6, 'µV')

output noise (rms) = 0.3084826103706843 µV

86

Calculate all widths
id_w_m12 = lv_nmos.lookup('ID_W', GM_ID=gm_id_m12, L=l_12, VDS=vds_headroom, VSB=2*vds_headroom)
w_12 = id_m12 / id_w_m12
w_12_round = max(round(w_12*2)/2, 0.5)
print('M1/2 W =', w_12, 'um, rounded W =', w_12_round, 'um')

id_m12c = id_m12
id_w_m12c = lv_nmos.lookup('ID_W', GM_ID=gm_id_m12c, L=l_12c, VDS=vds_headroom, VSB=3*vds_headroom)
w_12c = id_m12c / id_w_m12c
w_12c_round = max(round(w_12c*2)/2, 0.5)
print('M1/2c W =', w_12c, 'um, rounded W =', w_12c_round, 'um')

id_m34 = id_m12
id_w_m34 = lv_pmos.lookup('ID_W', GM_ID=gm_id_m34, L=l_34, VDS=vds_headroom, VSB=0)
w_34 = id_m34 / id_w_m34
w_34_round = max(round(w_34*2)/2, 0.5)
print('M3/4 W =', w_34, 'um, rounded W =', w_34_round, 'um')

id_m34c = id_m12
id_w_m34c = lv_pmos.lookup('ID_W', GM_ID=gm_id_m34c, L=l_34c, VDS=vds_headroom, VSB=vds_headroom)
w_34c = id_m34c / id_w_m34c
w_34c_round = max(round(w_34c*2)/2, 0.5)
print('M3/4c W =', w_34c, 'um, rounded W =', w_34c_round, 'um')

id_w_m5 = lv_nmos.lookup('ID_W', GM_ID=gm_id_m56, L=l_56, VDS=vds_headroom, VSB=0)
w_5 = i_total / id_w_m5
w_5_round = max(round(w_5*2)/2, 0.5)
print('M5 W =', w_5, 'um, rounded W =', w_5_round, 'um')

id_w_m5c = lv_nmos.lookup('ID_W', GM_ID=gm_id_m56c, L=l_56c, VDS=vds_headroom, VSB=vds_headroom)
w_5c = i_total / id_w_m5c
w_5c_round = max(round(w_5c*2)/2, 0.5)
print('M5c W =', w_5c, 'um, rounded W =', w_5c_round, 'um')

w_6 = w_5_round * i_bias_in / i_total
print('M6 W =', w_6, 'um')

w_6c = w_5c_round * i_bias_in / i_total
print('M6c W =', w_6c, 'um')

M1/2 W = 0.8310873754124203 um, rounded W = 1.0 um
M1/2c W = 0.8017034903234459 um, rounded W = 1.0 um
M3/4 W = 3.281329534410626 um, rounded W = 3.5 um
M3/4c W = 2.98941704661016 um, rounded W = 3.0 um

87

M5 W = 3.0508401171424118 um, rounded W = 3.0 um
M5c W = 2.8749923811908227 um, rounded W = 3.0 um
M6 W = 7.500000000000002 um
M6c W = 7.500000000000002 um

Print out final design values
print('Improved OTA dimensioning:')
print('--------------------------')
print('M1/2 W=', w_12_round, ', L=', l_12)
print('M1/2c W=', w_12c_round, ', L=', l_12c)
print('M3/4 W=', w_34_round, ', L=', l_34)
print('M3/4c W=', w_34c_round, ', L=', l_34c)
print('M5 W=', w_5_round, ', L=', l_56)
print('M5c W=', w_5c_round, ', L=', l_56c)
print('M6 W=', w_6, ', L=', l_56)
print('M6c W=', w_6c, ', L=', l_56c)
print()
print('Improved OTA performance summary:')
print('---------------------------------')
print('supply current =', i_total/1e-6, 'µA')
print('output noise =', output_noise_rms/1e-6, 'µVrms')
print('voltage gain error =', (gain_error-1)*100, '%')
print('-3dB bandwidth incl. parasitics =', f_bw/1e6, 'MHz')
print('turn-on time (slewing+settling) =', (t_slew+t_settle)/1e-6, 'µs')
print()
print('Improved OTA bias point check:')
print('------------------------------')
print('headroom M1+M1c =', vdd_min-vgs_m34+vgs_m12-vin_max, 'V')
print('headroom M4+M4c =', vdd_min-vin_max, 'V')
print('headroom M5+M5c =', vin_min-vgs_m12, 'V')

Improved OTA dimensioning:

M1/2 W= 1.0 , L= 0.5
M1/2c W= 1.0 , L= 0.5
M3/4 W= 3.5 , L= 0.5
M3/4c W= 3.0 , L= 0.5
M5 W= 3.0 , L= 1
M5c W= 3.0 , L= 1
M6 W= 7.500000000000002 , L= 1
M6c W= 7.500000000000002 , L= 1

Improved OTA performance summary:

supply current = 8.0 µA

88

output noise = 0.3084826103706843 µVrms
voltage gain error = -0.6719920439173688 %
-3dB bandwidth incl. parasitics = 81.14903707795307 MHz
turn-on time (slewing+settling) = 0.018817533398364204 µs

Improved OTA bias point check:

headroom M1+M1c = 0.5117812323744945 V
headroom M4+M4c = 0.5499999999999999 V
headroom M5+M5c = 0.26366489521518227 V

Source: Sizing for Basic (Improved) OTA

Looking at this sizing result we see that we achieve an improved 𝐴0 > 43 dB while meeting
also the other performance requirements of Table 2 with margin. In addition, we check the
voltage headroom of the critical MOSFET to see if we can squeeze it into the available supply
voltage range, and see that this is possible with our above choice selection of parameters.

Exercise: Improved OTA Sizing

Please take a detailed look at the above sizing notebook and play with the numbers
and calculations. Do you find a better trade-off for the input parameters? Can you
understand the ratio behind the choices and calculations?

12.1 Designing the Improved OTA

Based on the collected experience in this lecture and the result of the sizing procedure in
Section 11.1 you should be able to design this OTA. If you want, please go ahead and try
an implementation and check its performance with CACE.

As an alternative there is a prepared OTA design shown in Figure 47 which we will discuss
in detail next.

12.1.1 Discussion of the OTA Design

We will now do an analysis of the circuit design of the OTA including all the complications
which make this design practical.

1. For easier navigation, the device identifier are consistent with the circuit sketch in
Figure 46.

2. Some MOSFET dimensions are rounded to make a better fit in IC layout. Please also
look carefully at 𝑊 , 𝐿, and ng. The parameter ng sets how the total 𝑊 of a MOSFET
should be split into individual MOSFET fingers with 𝑊f = 𝑊/ng. This is done to
arrive at a suitably sized MOSFET physical implementation. As we will not deal with
IC layout in this lecture we will leave it at that.

89

https://iic-jku.github.io/analog-circuit-design/sizing/sizing_basic_ota_improved-preview.html#cell-0

1.45 < 1.5(nom) < 1.55V

10uA

0.7 < 0.8(nom) < 0.9V

5uA 1.25uA

1.25uA 1.25uA 5uA 5uA

16x10kOhm

4x10kOhm

1.25uA

16x10kOhm

~1.05V

~0.84V

~0.35V

~0.58V
ibias_5u

vdd

vss

vinp

vinn

vout

d_ena
ena_n

gate_n

gate_p

tail

gate_nc

gate_pc

dp_casc

ena

ena_n

 ota-improved.sch
Copyright 2024 Harald Pretl 2024-09-14 17:58:36SCHEM

M5

D

S

BG

sg13_lv_nmos

m=1
ng=2
l=1u
w=4u

M4

D

S

BG

sg13_lv_pmos

m=1
ng=1
l=0.5u
w=3u

M1

D

S

BG

sg13_lv_nmos

m=1
ng=1
l=0.5u
w=1u

M2

D

S

B G

sg13_lv_nmos

m=1
ng=1

l=0.5u
w=1u

M3

D

S

B G

sg13_lv_pmos

m=1
ng=1

l=0.5u
w=3u

M6

D

S

B G

sg13_lv_nmos

m=1
ng=1
l=1u

w=2u

Mpd3

D

S

BG

sg13_lv_nmos

m=1
ng=1
l=0.13u
w=1u

Mpd1

D

S

BG

sg13_lv_nmos

m=1
ng=1
l=0.13u
w=1u

Mpd2

D

S

BG

sg13_lv_pmos

m=1
ng=1
l=0.13u
w=1u

Mpd4

D

S

BG

sg13_lv_nmos

m=1
ng=1
l=0.13u
w=1u

M5c

D

S

BG

sg13_lv_nmos

m=1
ng=2
l=1u
w=4u

M2c

D

S

B G

sg13_lv_nmos

m=1
ng=1

l=0.5u
w=1u

M1c

D

S

BG

sg13_lv_nmos

m=1
ng=1
l=0.5u
w=1u

M6c

D

S

B G

sg13_lv_nmos

m=1
ng=1
l=1u

w=2u

M4c

D

S

BG

sg13_lv_pmos

m=1
ng=1
l=0.5u
w=3u

M3c

D

S

B G

sg13_lv_pmos

m=1
ng=1

l=0.5u
w=3u

M7_1

D

S

BG

sg13_lv_nmos

m=1
ng=1
l=1u
w=2u

M7c_1

D

S

BG

sg13_lv_nmos

m=1
ng=1
l=1u
w=2u

Mpd5

D

S

BG

sg13_lv_nmos

m=1
ng=1
l=0.13u
w=1u

Mpd6

D

S

BG

sg13_lv_nmos

m=1
ng=1
l=0.13u
w=1u

Mpd8

D

S

BG

sg13_lv_pmos

m=1
ng=1
l=0.13u
w=1u

M8

D

S

B G

sg13_lv_pmos

m=1
ng=1

l=0.5u
w=1u

M8c

D

S

B G

sg13_lv_pmos

m=1
ng=1

l=0.5u
w=1u

M9

D

S

BG

sg13_lv_pmos

m=1
ng=1
l=0.5u
w=1u

M9c

D

S

BG

sg13_lv_pmos

m=1
ng=1
l=0.5u
w=1u

Mpd7

D

S

BG

sg13_lv_pmos

m=1
ng=1
l=0.13u
w=1u

M11_3

D

S

B G

sg13_lv_nmos

m=1
ng=1

l=0.5u
w=1u

M10_1

D

S

BG

sg13_lv_nmos

m=1
ng=1
l=1u
w=2u

M10c_1

D

S

BG

sg13_lv_nmos

m=1
ng=1
l=1u
w=2u

Vmeas

Vmeas1

M7_2

D

S

BG

sg13_lv_nmos

m=1
ng=1
l=1u
w=2u

M7_3

D

S

BG

sg13_lv_nmos

m=1
ng=1
l=1u
w=2u

M7_4

D

S

BG

sg13_lv_nmos

m=1
ng=1
l=1u
w=2u

M10_2

D

S

BG

sg13_lv_nmos

m=1
ng=1
l=1u
w=2u

M10_3

D

S

BG

sg13_lv_nmos

m=1
ng=1
l=1u
w=2u

M10_4

D

S

BG

sg13_lv_nmos

m=1
ng=1
l=1u
w=2u

M10c_2

D

S

BG

sg13_lv_nmos

m=1
ng=1
l=1u
w=2u

M10c_3

D

S

BG

sg13_lv_nmos

m=1
ng=1
l=1u
w=2u

M10c_4

D

S

BG

sg13_lv_nmos

m=1
ng=1
l=1u
w=2u

M7c_2

D

S

BG

sg13_lv_nmos

m=1
ng=1
l=1u
w=2u

M7c_3

D

S

BG

sg13_lv_nmos

m=1
ng=1
l=1u
w=2u

M7c_4

D

S

BG

sg13_lv_nmos

m=1
ng=1
l=1u
w=2u

V
m

e
a
s2

Vmeas3

Mpd9

D

S

BG

sg13_lv_nmos

m=1
ng=1
l=0.13u
w=1u

Mpd10

D

S

BG

sg13_lv_pmos

m=1
ng=1
l=0.13u
w=1u

ota-improved-res-16

XR3

rp

rn

ota-improved-res-16

XR4

rp

rn

V
m

e
a
s4

ota-improved-res-4

XR1

rp

rn

Mpd11

D

S

BG

sg13_lv_nmos

m=1
ng=1
l=0.13u
w=0.5u

M11_4

D

S

B G

sg13_lv_nmos

m=1
ng=1

l=0.5u
w=1u

M
d
e
co

u
p
1

DS B
G

sg
1

3
_l

v
_n

m
o
s

m
=

1
n
g
=

4
l=

1
u

w
=

8
u

M
d
e
co

u
p
2

DS B
G

sg
1

3
_l

v
_n

m
o
s

m
=

1
n
g
=

4
l=

1
u

w
=

8
u

M
d
e
co

u
p
3

D SB
G

sg
1

3
_l

v
_p

m
o
s

m
=

1
n
g
=

4
l=

0
.5

u
w

=
1

2
u

M11_2

D

S

B G

sg13_lv_nmos

m=1
ng=1

l=0.5u
w=1u

M11_1

D

S

B G

sg13_lv_nmos

m=1
ng=1

l=0.5u
w=1u

Figure 47: Improved OTA design in Xschem.

3. In order to allow good matching in the IC layout, MOSFETs (and other components)
have to constructed from equal pieces. To that end, 𝑊/𝐿 scaling is done using unit
elements (see finger width 𝑊f). Sometimes, besides 𝑊 the length 𝐿 has to be scaled,
and this leads to the oddly-looking series stacking of some MOSFET (easily recog-
nizable by the connected gates). In order to increase circuit readability, a subcircuit
could be constructed hiding this series stacking of MOSFET, but it is sometimes easier
to avoid subcircuits. There is a fine line in this trade, sometime a depth of 4 is the
decision point between subcircuit use/no-use.

4. As you can (hopefully) see the circuit is carefully drawn to ease readability. Important
nets are named, text comments state certain properties like nominal voltage levels, bias
currents, etc. Current sensing elements are added to directly see the dc currents in
the circuit simulation.

5. The bias voltage generation for the cascodes is included as well. The voltage drop for
the bottom transistors is developed across a resistor (this is a simple but effective way,
but other implementations are possible as well). We are using a dummy branch for
bias generation (constructed with 𝑀7/7C,8/8C and 𝑅3).

6. The floating bias voltage 𝑉bias2 is created by implementing a current source from 𝑉DD
(𝑀9/9C), then a MOSFET diode 𝑀11 with resistor 𝑅4, and an additional current source
towards 𝑉SS (𝑀10/10C). Instead of using the bottom current source the current in the
tail current source 𝑀5/5C could have been increased, but matching is better with the
chosen approach.

7. Power-down transistors 𝑀pd,𝑥 are added to allow a proper shutdown of the circuit
with a digital enable input. It is generally a good idea to clamp floating nodes in off-
mode so that no issues during power-down (like increased leakage currents) or delayed

90

startup or shutdown are occuring. It is further a good design principle to buffer all
incoming digital signals with inverters connected to the local supply. This lowers the
risk of unwanted noise coupling or excessive slewrates on the incoming digital signals.

8. Sensitive bias nodes are buffered with decoupling capacitors. We are using MOSFET
as nonlinear capacitors, which is not an issue in this application, but we value the
increased capacitive density. Please note how the MOSFET are connected (to 𝑉DD?
or to 𝑉SS?).

The resistor used in this circuit are subcircuits to allow series connection of unit resistor
elements. The schematic of one element is shown in Figure 48. It is using an effective method
to create a series string of connected resistors using wire bundles. Try to understand the
circuit, consult the Xschem manual, and look at the resulting SPICE netlist to confirm your
finding.

rp

rn

rp,r[0..2]

r[0..2],rn

 ota-improved-res-4.sch
Copyright 2024 Harald Pretl 2024-09-03 12:33:41SCHEM

w/l = 0.5e-6 / 3.5e-6
rhigh
XR5[0..3]

R=1.067e+04

b=0
m=1

Figure 48: Series resistor implementation used in the improved OTA design.

Parallel Connection

Note that a parallel connection of devices is effectively possible using the multiplier
notation of Xschem.

12.2 Simulation of Improved OTA

Now that the circuit design of the improved OTA is done, we an use the same simulation
test bench as for the basic OTA. The testbench is shown in Figure 49 and Figure 50.

91

GND

v_dd

GND

v_ss

v_out

v_in

v_ena

MODEL1

.lib cornerMOSlv.lib mos_tt

NGSPICE

.temp 27

.control
option sparse
save all
op
write ota-improved_tb-ac.raw
set appendwrite

ac dec 101 1k 1G
write ota-improved_tb-ac.raw
plot 20*log10(v_out)

meas ac dcgain MAX vmag(v_out) FROM=10 TO=10k
let f3db = dcgain/sqrt(2)
meas ac fbw WHEN vmag(v_out)=f3db FALL=1
let gainerror=(dcgain-1)/1
print dcgain
print fbw
print gainerror

noise v(v_out) Vin dec 101 1k 100MEG
print onoise_total

.endc

Vdd

1.5

 ota-improved_tb-ac.sch
Copyright 2024 Harald Pretl 2024-09-03 10:21:45SCHEM

simulate annotate OP

ota-improved

xota

v
d

d

vout

vinp

vinn

ib
ia

s_
5

u
d

_e
n
a

v
ss

Vss

0

1

2

C1
50f
m=1Vin

dc 0.8 ac 1

I0
5u

Venable

1.5

MODEL2

.lib cornerRES.lib res_typ

Figure 49: Simulation testbench of the improved OTA design (small-signal).

GND

v_dd

GND

v_ss

v_out

v_in

v_ena

NGSPICE

.temp 27

.ic v(v_vout)=0

.control

tran 0.005u 15u uic
plot v_ena v_out

let vout_limit=0.8*0.99
meas tran tcross WHEN v(v_out)=vout_limit
let vena_limit=0.5*1.5
meas tran tstart WHEN v(v_ena)=vena_limit
let tsettle=tcross-tstart
print tsettle

.endc

Vdd

1.5

 ota-improved_tb-tran.sch
Copyright 2024 Harald Pretl 2024-09-03 08:34:56SCHEM

simulate annotate OP

ota-improved

xota

v
d

d

vout

vinp

vinn

ib
ia

s_
5

u
d

_e
n
a

v
ss

Vss

0

1

2

C1
50f
m=1Vin

0.8

I0
dc 0 pwl(0 0 1.1u 0 1.2u 5u)

Venable

dc 0 pwl(0 0 1u 0 1.1u 1.5)

MODEL1

.lib cornerMOSlv.lib mos_tt

MODEL2

.lib cornerRES.lib res_typ

Figure 50: Simulation testbench of the improved OTA design (large-signal).

92

Exercise: Improved OTA Initial Simulation

Please use the above testbenches to simulate the improved OTA:

1. Check the dc bias points. Are they good? How stable are they across PVT
variations?

2. What are the small-signal parameters like gain, noise and bandwidth? Are they
fitting the specification?

3. What is large-signal performance? Is the settling fast enough? Is the settling well
behaved, i.e., are there overshoots or other strange ringing indicating potential
stability issues?

4. Try to improve the design. Change various device parameters and see what
happens. Whenever you change something, check the dc operating point first. If
the dc operating point is not good no further simulations make sense.

12.3 Corner Simulation of Improved OTA

Just like for the basic OTA we use the CACE system to check the performance of the
improved OTA design holistically across variations like PVT and input signal variations.
The results of the CACE run are shown below in Note 2.

Note 2: CACE Summary for Improved OTA

13 CACE Summary for ota-improved
netlist source: schematic

Parameter Tool Result
Min

Limit
Min

Value

Typ
Tar-
get

Typ
Value

Max
Limit

Max
Value Status

Output
voltage
ratio

ngspice gain 0.99
V/V

1.000
V/V

any 1.001
V/V

1.01
V/V

1.009
V/V

Pass
�

Bandwidth ngspice bw 10e6
Hz

107908000.000
Hz

any 226025000.000
Hz

any 292975000.000
Hz

Pass
�

Output
noise

ngspice noise any 0.346
mV

any 0.407
mV

1
mV

0.497
mV

Pass
�

Settling
time

ngspice tsettle any 0.196
us

any 0.212
us

5 us 0.226
us

Pass
�

93

94

13.1 Plots
13.2 gain_vs_temp

Figure 51: gain_vs_temp

95

96

13.3 gain_vs_vin

Figure 52: gain_vs_vin
97

98

13.4 gain_vs_vdd

Figure 53: gain_vs_vdd
99

100

13.5 gain_vs_corner

Figure 54: gain_vs_corner
101

102

13.6 bw_vs_temp

Figure 55: bw_vs_temp
103

104

13.7 bw_vs_vin

Figure 56: bw_vs_vin
105

106

13.8 bw_vs_vdd

Figure 57: bw_vs_vdd
107

108

13.9 bw_vs_corner

Figure 58: bw_vs_corner
109

110

13.10 noise_vs_temp

Figure 59: noise_vs_temp
111

112

13.11 noise_vs_vin

Figure 60: noise_vs_vin
113

114

13.12 noise_vs_vdd

Figure 61: noise_vs_vdd
115

116

13.13 noise_vs_corner

Figure 62: noise_vs_corner
117

118

13.14 settling_vs_temp

Figure 63: settling_vs_temp
119

120

13.15 settling_vs_vin

Figure 64: settling_vs_vin
121

122

13.16 settling_vs_vdd

Figure 65: settling_vs_vdd
123

124

13.17 settling_vs_corner

Figure 66: settling_vs_corner
125

The improved performance allows to improve the specificatios in a few important points,
notably the output voltage tolerance which is an important metric for a reference voltage
buffer. We have intetionally increased the power consumption a little bit, but we negotiated
with the chip lead designer a changed bias current level, so overall the situation is even
slightly improved. The new situation with the improved design is summarized in Table 5
(unchanged entries are not shown).

Table 5: Voltage buffer specification

Specification
Basic

5T-OTA
Improved

OTA Unit
Output voltage error < 3 < 1 %
Total output noise (rms) < 1 < 0.5 mVrms
Supply current (as low as possible) < 10 < 20 µA
Turn-on time (settled to with 1%) < 10 < 1 µs
Externally provided bias current (nominal) 20 5 µA

14 A Fully-Differential OTA

To be added in a future release.

15 Biasing the OTA

To be added in a future release.

16 An RC-OPAMP Filter

To be added in a future release.

17 Summary & Conclusion

By now, you should be familiar with the use of a schematic entry tool (Xschem) and circuit
simulator (ngspice). You have learned the basic performance trade-offs, and the large- and
small-signal behviour of the MOSFET. You can use the 𝑔m/𝐼D method to size MOSFET for
class-A operation. You can design simple amplifiers based on OTA structures. In summary,
you are on a good way to become a good analog or mixed-signal circuit designer!

126

Feedback

We hope you have enjoyed these lecture notes! If you have feedback, suggestions,
additions, or corrections, please send us an e-mail, create a GitHub issue, or provide
a GitHub pull request. Thank you in advance for your contributions!

18 Appendix: Middlebrook’s Method

When we want to do a closed-loop gain analysis (for stability or other investigations), we
have the need to break the loop at one point, apply a stimulus, and monitor the response
on the other end. By doing this we want to keep the loading on both ends similar to the
original case. To achieve this, we break the loop at one point by inserting (1) an ac voltage
source, and (2) attach an ac current source, as shown in Figure 67 and Figure 68. The
derivation of this approach is presented in (Middlebrook 1975), and has the big advantage
that loading is not changed, and the bias points are also correct.

Source: Article Notebook

Figure 67: Middlebrook voltage loop gain simulation.

Source: Article Notebook

Figure 68: Middlebrook current loop gain simulation.

Source: Article Notebook

127

https://iic-jku.github.io/analog-circuit-design/index.qmd.html
https://iic-jku.github.io/analog-circuit-design/index.qmd.html
https://iic-jku.github.io/analog-circuit-design/index.qmd.html

For both cases we do an ac analysis, and find the corresponding transfer functions 𝑇v and
𝑇i as

𝑇v = −𝑉r
𝑉f

and
𝑇i = −𝐼r

𝐼f
.

Then, we can calculate the closed-loop transfer function 𝑇 (𝑠) = 𝐻ol(s) as

𝑇 (𝑠) = 𝑇v𝑇i − 1
𝑇v + 𝑇i + 2.

19 Appendix: Miller’s Theorem

Using Miller’s theorem we can find the equivalent circuit of an impedance connected between
two nodes, and we know the transfer function between these nodes. The given situation is
shown in Figure 69, and the equivalent circuit is shown in Figure 70.

Source: Article Notebook

Figure 69: An impedance connected between two nodes A and B.

Source: Article Notebook

128

https://iic-jku.github.io/analog-circuit-design/index.qmd.html
https://iic-jku.github.io/analog-circuit-design/index.qmd.html

Figure 70: An equivalent circuit using Miller’s theorem.

Source: Article Notebook

Using Miller’s theorem (Sheikholeslami 2015) we can calculate

𝑍1 = 𝑍
1 − 𝐴 = 𝑍

1 − 𝑉B/𝑉A

and
𝑍2 = 𝑍

1 − 𝐴−1 = 𝑍
1 − 𝑉A/𝑉B

to arrive at an equivalent circuit, given that 𝐴 = 𝑉B/𝑉A is the voltage gain between nodes
A and B. A derivation of this theorem is relative straightforward considering the current
through 𝑍 when looking into the impedance from either node A or node B and calculating
an equivalent impedance causing the same current.

Note that if 𝑉A = 𝑉B then there is no current flow through 𝑍, and accordingly the imped-
ances 𝑍1 = 𝑍2 = ∞.

Miller’s theorem can be quite handy when an impedance is strapped between two nodes,
and we want to break this connection in a calculation, e.g., considering the effect of 𝐶GD in
a MOSFET.

20 Appendix: 5T-OTA Small-Signal Output Impedance

This section gives additional details to the analysis presented in Section 7.3. Here we provide
the full calculation of the output impedance/conductance of the 5T-OTA for frequencies
below the dominant pole, i.e. we neglect any capacitors.

Source: Article Notebook

129

https://iic-jku.github.io/analog-circuit-design/index.qmd.html
https://iic-jku.github.io/analog-circuit-design/index.qmd.html

Figure 71: 5-transistor OTA small-signal model for output impedance calculations.

Source: Article Notebook

20.1 Open-Loop Configuration

For the open-loop case, the gates of 𝑀1 and 𝑀2 are tied to ground and thus, both 𝑣gs are
equal.

𝑣in,p = 𝑣in,p = 0 V

𝑣gs1 = 𝑣gs2 (26)

KCL at the output node:

𝑖out − 𝑔ds4𝑣out − 𝑔m34𝑣gs34 − 𝑖𝑔ds2
− 𝑔m2𝑣gs2 = 0 (27)

KCL at the tail node:
𝑔m1𝑣gs1 + 𝑔m2𝑣gs2 + 𝑖𝑔ds2

+ 𝑔ds5𝑣gs2 = 0

Using Equation 26 we can eliminate 𝑣gs1 and solve for 𝑖𝑔ds2
.

𝑖𝑔ds2
= − (𝑔m1 + 𝑔m2 + 𝑔ds5) 𝑣gs2 (28)

Furthermore, we need an expression for 𝑣gs34. Ohm’s law at the conductance 𝑔m34 will
suffice.

𝑣gs34 = − 𝑔m1
𝑔m34

𝑣gs1 (29)

130

https://iic-jku.github.io/analog-circuit-design/index.qmd.html

KVL from the output node down to ground (over 𝑔ds2 and 𝑔ds5) in combination with Equa-
tion 28 gives us an expression for 𝑣gs2

𝑣gs2 = − 𝑔ds2
𝑔m1 + 𝑔m2 + 𝑔ds2 + 𝑔ds5

𝑣out (30)

Now, we can plug in all quantities into Equation 27. First, Equation 28 is inserted, which
provides an expression for the current through the output conductance 𝑔ds2 of 𝑀2.

𝑖out − 𝑔ds4𝑣out − 𝑔m34𝑣gs34 + (𝑔m1 + 𝑔ds5) 𝑣gs2 = 0

Second, 𝑣gs34 is subsituted by Equation 29. Since we have assumed a matched pair of
transistors for the current mirror comprised of 𝑀3 and 𝑀4, 𝑔m34 perfectly cancels out of
the equation, and is effectively replaced by the transconductance 𝑔m1 of the input transistor
𝑀1.

𝑖out − 𝑔ds4𝑣out + (2𝑔m1 + 𝑔ds5) 𝑣gs2 = 0

Third, Equation 30 gives as an expression for the last remaining unknown 𝑣gs2. Thus, the
factor in front of 𝑣out defines the conductance at the output node.

𝑖out − [𝑔ds4 + (2𝑔m1 + 𝑔ds5) 𝑔ds2
𝑔m1 + 𝑔m2 + 𝑔ds2 + 𝑔ds5

] 𝑣out = 0 (31)

Before, we interpret this result, we use are assumption of matched input transistors (𝑔m12 =
𝑔m1 = 𝑔m2) and slightly rearrange the equation to give us more insight.

𝑖out − [𝑔ds4 + 𝑔ds2 ⋅ (2𝑔m12 + 𝑔ds5)
𝑔ds2 + (2𝑔m12 + 𝑔ds5)] 𝑣out = 0 (32)

Now, we can identify the common equation of the total resistance of two parallel resistors.
However, we are dealing with conductances here, so the same equation describes the total
conductance of two conductances in series, while parallel conductances are simply summed.
In parallel to 𝑔ds4, there is effectively the series connection of 𝑔ds2 and (2𝑔m12 + 𝑔ds5) at work.
If we apply the general assumption of 𝑔m ≫ 𝑔ds, only the parallel connection of 𝑔ds4 and
𝑔ds2 remains. Therefore, moving 𝑔ds2 + 𝑔ds4 in parallel to 𝐶load in Section 7.3 was valid.

𝑖out
𝑣out

≈ 𝑔ds4 + 𝑔ds2 (33)

20.2 Closed-Loop Configuration

In contrast to the open-loop case, we keep the gate of 𝑀1 connected to ground and tie the
input of 𝑀2 to the output node 𝑣out.

𝑣in,n = 𝑣out (34)

KCL at the output node:

𝑖out − 𝑔ds4𝑣out − 𝑔m34𝑣gs34 − 𝑔ds2𝑣gs2 − 𝑔m2𝑣gs2 = 0 (35)

131

We use KVL from the output node down to ground to find an expression for 𝑣gs2.

𝑣gs2 = 𝑣out + 𝑣gs1 (36)

KCL at the tail node:

𝑔m1𝑣gs1 + 𝑔m2𝑣gs2 + 𝑔ds2𝑣gs2 + 𝑔ds5𝑣gs2 = 0 (37)

Using Equation 36 to subsitite 𝑣gs2 in {#eq-app-vbufzout-kcl-vtail-cl} we find an equation
for 𝑣gs1.

𝑣gs1 = − 𝑔m2 + 𝑔ds2
𝑔m1 + 𝑔m2 + 𝑔ds2 + 𝑔ds5

𝑣out (38)

Again, we derive the output conductance by plugging Equation 36, Equation 29 and Equa-
tion 38 step by step into Equation 35. First, we use Equation 36 to eliminate 𝑣gs2.

𝑖out − (𝑔ds4 + 𝑔ds2 + 𝑔m2) 𝑣out − 𝑔m34𝑣gs34 − (𝑔ds2 + 𝑔m2) 𝑣gs1 = 0

Second, Equation 29 also holds for the closed-loop case and lets us eliminate 𝑣gs34.

𝑖out − (𝑔ds4 + 𝑔ds2 + 𝑔m2) 𝑣out − (𝑔ds2 + 𝑔m2 − 𝑔m1) 𝑣gs1 = 0

Third, we use Equation 38 to eliminate the remaining unknown 𝑣gs1.

𝑖out − (𝑔ds4 + 𝑔ds2 + 𝑔m2) 𝑣out + (𝑔ds2 + 𝑔m2 − 𝑔m1) 𝑔m2 + 𝑔ds2
𝑔m1 + 𝑔m2 + 𝑔ds2 + 𝑔ds5

𝑣out = 0

A more simpler result can be obtained, if we neglect 𝑔ds2 and 𝑔ds5 in Equation 38 first
(𝑔m ≫ 𝑔ds) and then plug it into our main equation. Additionally, we use 𝑔m12 = 𝑔m1 = 𝑔m2
to further simplify the equation.

𝑖out − (𝑔ds4 + 3
2𝑔ds2 + 𝑔m12) 𝑣out ≈ 0

If we apply 𝑔m ≫ 𝑔ds again, we arrive at the same result which was used for the noise
calculation in Section 7.3, compare the expression for 𝑌 ′

load given by Equation 19 .

𝑖out − (𝑔m12) 𝑣out ≈ 0

21 Appendix: ngspice Cheatsheet

Here is an unsorted list of useful ngspice settings and command:

132

21.0.1 Commands

• ac dec|lin points fstart fstop performs a small-signal ac analysis with either
linear or decade sweep

• dc sourcename vstart vstop vincr [src2 start2 stop2 incr2] runs a dc-
sweep, optionally across two variables

• display shows the available data vectors in the current plot
• echo can be used to display text, $variable or $&vector, can be useful for debugging
• let name = expr to create a new vector; unlet vector deletes a specified vector;

access vector data with $&vec
• linearize vec linearizes a vector on an equidistant time scale, do this before an FFT;

with set specwindow=windowtype a proper windowing function can be set
• meas can be used for various evaluations of measurement results (see ngspice manual

for details)
• noise v(output <ref>) src (dec|lin) pts fstart fstop runs a small-signal

noise analysis
• op calculates the operating point, useful for checking bias points and device parameters
• plot expr vs scale to plot something
• print expr to print it, use print all to print everything
• remzerovec can be useful to remove vectors with zero length, which otherwise cause

issues when saving or plotting data
• rusage plot information about resource usage like memory
• save all or save signal specifies which data is saved during simulation; this low-

ers RAM usage during simulation and size of RAW file; do save before the actual
simulation statement

• setplot show a list of available plots
• set var = value to set the value of a variable; use variable with $var; unset var

removes a variable
• set enable_noisy_r to enable noise of behavioral resistors; usually, this is a good

idea
• shell cmd to run a shell command
• show : param, like show : gm shows the 𝑔m of all devices after running an operating

point with op
• spec plots a spectrum (i.e. frequency domain plot)
• status shows the saved parameters and nodes
• tf runs a transfer function analysis, returning transfer function, input and output

resistance
• tran tstep tstop <tstart <tmax>> runs a transient analysis until tstop, reporting

results with tstep stepsize, starting to plot at tstart and performs time steps not
larger then tmax

• wrdata writes data into a file in a tabular ASCII format; easy to further process
• write writes simulation data (the saved nodes) into a RAW file; default is binary,

can be changed to ASCII with set filetype=ascii; with set appendwrite data is
added to an existing file

133

21.0.2 Options

Use option option=val option=val to set various options; important ones are:

• abstol sets the absolute current error tolerance (default is 1pA)
• gmin is the conductance applied at every node for convergence improvement (default

is 1e-12); this can be critical for very high impedance circuits
• klu sets the KLU matrix solver
• list print the summary listing of the input data
• maxord sets the numerical order of the integration method (default is 2 for Gear)
• method set the numerical integration method to gear or trap (default is trap)
• node prints the node table
• opts prints the option values
• temp sets the simulation temperature
• reltol set the relative error tolerance (default is 0.001 = 0.1%)
• savecurrents saves the terminal currents of all devices
• sparse sets the sparse matrix solver, which can run noise analysis, but is slower than

klu
• vntol sets the absolute voltage error tolerance (default is 1µV)
• warn enables the priting of the SOA warning messages

21.0.3 Convergence Helper

• option gmin can be used to increase the conductance applied at every node
• option method=gear can lead to improved convergence
• .nodeset can be used to specify initial node voltage guesses
• .ic can be used to set initial conditions

22 Appendix: Xschem Cheatsheet

When opening Xschem, using Help -> Keys a pop-up windows comes up with many useful
shortcuts. The most useful are:

22.0.0.1 Moving around in a schematic:

• Cursor keys to move around
• Ctrl-e to go back to parent schematic
• e to descend into selected symbol
• f full zoom on schematic
• Shift-z to zoom in
• Ctrl-z to zoom out

134

22.0.0.2 Editing schematics:

• Del to delete elements
• Ins to insert elements from library
• Escape to abort an operation
• Ctrl-# to rename components with duplicate names
• c to copy elements
• Alt-Shift-l to add wire lable
• Alt-l to add lable pin
• m move selected objects
• q to edit properties
• Ctrl-s to save schematic
• t to place a text
• Shift-T to toggle the ignore flag on an instance
• u to undo an operation
• w to draw a wire
• Shift-W draw wire and snap to close pin or netpoint
• & to join, break, and collapse wires

22.0.0.3 Viewing/Simulating Schematics

• 5 to only view probes
• k to highlight selected net
• Shift-K to unhighlight all nets
• Shift-o to toggle light/dark color scheme
• s to run a simulation

23 Appendix: Circuit Designer’s Etiquette

24 Circuit Designer’s Etiquette

Harald Pretl, Institute for Integrated Circuits (IIC), Johannes Kepler Univer-
sity, Linz

Release: Spring 2024

24.1 Prolog

A consistent naming and schematic drawing style, as well as VHDL/Verilog coding scheme,
is a huge help in avoiding errors and increasing productivity. Even if just one person
works on a design, the error rate is lowered. If multiple persons work together in a team, a
consistent working style is a big help for smooth cooperation without misunderstanding each
other’s intentions. Consistency also helps to reuse existing blocks. In a well-done design,

135

the documentation is included in the schematic/source code, so there is no searching for a
piece of documentation somewhere else (which is often not found anyway).

24.2 Pins

• Name package pins (interfacing with the outside the IC) in UPPERCASE, and all
internal signals in lowercase.

• Supply voltages like VDD/VCC and ground like VSS/GND need to start with ei-
ther VDD, VCC, VSS, VEE or GND, plus a suitable suffix. Examples: VDD1, VDD_AMP,
vdd_ldo_out, VSS_ANA (uppercase means connected to a pin, lowercase means a VDD
is created on-chip by, e.g., an LDO).

• Preferred are VDD/VSS for CMOS and VCC/GND for bipolar circuits. In BiCMOS circuits
VDD/VSS are preferred, as usually, the digital content is the major part.

• Digital signals in an analog schematic should start with di_ (for digital input) or do_
(for digital output). Example: di_ctrl1. In the rare case of a bi-directional digital
signal dio_ can be used.

• Name digital signals consistently: di_pon is active-high, di_pon_b is active-low (_b
standing for the negating “bar”); as an alternative, this last signal could be named
di_disable. di_reset is an active-high reset, but often a reset is active-low, so it
needs to be named di_reset_b (an alternative is di_resetn).

• In mixed-voltage designs, it might be useful to append the voltage level of a signal
to avoid connecting incompatible inputs and outputs. Example: do_comp_1v2 or
di_poweron_3v3.

• Digital buses always have the MSB to the left and LSB to the right. Example:
do_adc[7:0].

• Analog signals should start with a v for a voltage signal or i for a current signal. It
is often useful to include a value for bias signals or make the naming meaningful. RF
signals, which are often neither voltage nor current signals, start the name with rf_.
Examples: Signal and pin names like ibias_30u (30uA of bias current), vbg_1v2 (a
bandgap voltage of 1.2V), vin_p, v_filt_out_n, and rf_lna_i speak for themselves.

• Appending analog signals with _i and _o might be useful if a clear direction is obvious
in the signal flow. If a signal is bi-directional, it is better to skip _io.

• Consistently use pin types input, output, or inout to indicate signal flow. Power
supply pins are of inout type.

24.3 Schematics

• In analog schematics, add a textual note about basic circuit performance. For exam-
ple, in an amplifier, note things like suitable supply range, typical and w.c. current
consumption, gain, GBW, input voltage range, PSRR, and other useful information.

• If a circuit has a quirk or is particularly clever, add a note on how it works, so others
can understand the function without excessive analysis (reviewing a circuit should not
be a brain teaser).

136

• Use provided borders or drawing templates for schematics, and fill the data in, like
circuit designer name, date, change history, project name, etc.

• Use a versioning system for your data, and check in often. This avoids data loss, and
going back to an earlier design stage is simple. SVN is often preferable to GIT for binary
data.

• Draw uncluttered clear circuits. Ideally, the circuit function is apparent by inspection
quickly. Everyone can obscure an inverter so that it takes 5 minutes to recognize it,
but this is not a good design.

• Don’t alter the standard grid setting while drawing schematics (also make sure that
the pins in your drawn symbols are on the standard grid)! Off-grid schematic elements
will haunt you and your colleagues forever!

• Once a schematic is finished, take the time to name component instances properly
(you can use speaking names like Rstab or simply use R1, R2, etc.). Use iterated
instances to clean up the circuit. Use wire bundles to clean up circuits where useful.
A clever technique is to use bundles and iterated instances to efficiently draw large
resistor ladders, for example (however, use with care).

• Avoid connection-by-name, as it makes the circuit hard to read. However, there is
a fine line to not cluttering circuits. Signals with many connections (vdd, vss, pon,
pon_b) are often better done with connection-by-name instead of drawing a wire.

• Some tools allow the use of colored wires, which might be used to mark signal paths,
bias lines, etc. However, this should not be overdone; use it with care.

• If you add auxiliary elements like current probes, ensure they get proper treatment
when creating the netlist for the LVS (some elements should be shorted, and some
elements simply taken out). Ideally, only use a single schematic for simulation, LVS,
etc. By using tool features this can usually be done, and avoids the need to keep
multiple schematics of one block in sync.

• Use annotations in the schematics to (1) denote current levels in branches, (2) denote
bias voltage levels, (3) explain the function of logic input signals, and (4) put in logic
tables if not obvious.

• Add comments concerning the layout, like matching devices, certain considerations of
placement, sensitive nodes, etc.

• Add simple ASCII diagrams for timing signals if useful.
• Name internal signals (signals connected to pins are anyway named like the port) in

a meaningful way; this makes tracking signals in simulation or layout much easier
(automatic net names like net0032 are of not much help).

• Properly name instances, not just I1 or I2; better is amp1, inv2, etc. (a de-
scriptor in a tool output like I1/I13/I5/net017 is not helpful; compare that to
adc1/bias/bg/vref_int).

• On check-and-save, never ignore warnings; just fix them! They will annoy you and
others forever and might flag critical design flaws.

• Name cells interpretably, ideally making the function clear already by the name. It
is often useful to prefix or postfix a cell by the project name and design iteration.
Example: In the project GIGAPROJECT, the cells which are changed in the second
design step are prefixed with g2_, like g2_amp_bias. Of course, more letters as a
project abbreviation are useful if a name collision is likely to happen.

• Cell names in lowercase are a good choice, as otherwise, capitalization leads to

137

inconsistency in cell names. Use _ to break words instead of CamelCase, like
amp_bias_startup.

• When building a design, start with the hierarchy first; plan a suitable design structure,
and define all interfaces. Implement simple behavioral models for every circuit block
(either with controlled sources or using Verilog-A or VHDL/Verilog digital models).
In this way, you can simulate the overall design early and find issues in the hierarchy
or the interconnects. Then, populate the hierarchy with the detailed circuit designs
in the leaf cells. At each point in the design process, you have a design that can be
simulated, with some blocks as behavioral models and some blocks already designed.
Try to avoid scattered circuit elements (digital or analog) in the hierarchy; it is better
to push all components into the leaf cells.

• Avoid huge schematics, better break them down into smaller, maintainable, and self-
contained blocks, and provide a simulation test bench for these simple blocks. In this
way, later re-simulation across the hierarchy is easily possible.

• When building up the hierarchy, choose pin names and signal names as consistently
as possible. Example: use the signal name vref_int when connecting two leaf cells
with the pin names vref_int_o and vref_int_i.

• Avoid the excessive use of net breakers like small resistors, as they inhibit net tracing
and can lead to simulation convergence issues. If a net breaker is needed (or a current
should be probed) use a 0V dc voltage source.

24.4 Symbols

• Spend time drawing nice symbols! Ideally, the underlying circuit functionality is
apparent by just looking at the symbol.

• Arrange the pins in a meaningful way.
• Group pins that belong together. An often useful arrangement is to locate the inputs

on the left side, outputs on the right, digital control inputs at the bottom, and supplies
at the top.

• Make the origin of a symbol in the top-left corner. In this way, symbols can be changed
more easily, for example, by swapping out different versions of blocks.

• The cell name (and potentially library name) should be visible in the symbol, not only
in the properties.

24.5 Design Robustness

• It is good practice to buffer incoming digital signals with a local inverter (connected
to the local block supply) before connecting it to internal nodes. This improves the
slew rate of the control signal and lowers the chance of unwanted cross-talk.

• Consider dummy elements for good matching, and try to make useful unit sizes of
components. This will make the layout creation much smoother.

• The golden rule of good analog performance is good matching, and good matching is
achieved by identical components (size, orientation, surroundings)! If the layout does
not look nice (humans like symmetry), it will not perform well.

138

• Consider supply decoupling and bias voltage decoupling inside the cells. Often, dummy
elements can be used for that. Be aware, however, of unwanted supply resonances
(think bond wire L and decoupling C) and slow transients of bias nodes after distur-
bance.

• Always implement a proper power-down mode. Avoid floating nodes in off-mode. The
better defined the on- as well as the off-mode are, the less the chance of leakage
currents. Always simulate both modes (on and off), and also simulate a transient
power-up of a circuit to identify issues with slow bias start or insufficient turn-off, or
nasty feedback loop instabilities during transients.

• When drawing the first schematic, add parasitic capacitances to each node. If all
nodes are labeled, a capacitor bank is easily put into one corner of the schematic
with parasitic caps tied to the ground. Use 5fF as a starting value (and replace it
later with the correct value from parasitic extraction). This accounts for some wiring
parasitics in layout and helps to account for these layout impairments early in the
design phase and later when simulating the schematic instead of the extracted netlist
with parasitics.

24.6 Rules for Good Mixed-Signal and RF Circuits

• Separate analog and digital power supply, connect to package pins with multiple bond
wires/bumps, and separate noisy and clean vdd/vss from each other!

• Prevent supply loops; keep vdd and vss lines close to each other (incl. bond wires and
PCB traces)! This minimizes L and coupling factor k.

• Some prefer a massive (punched) ground plane, which is possible if you have enough
metal levels. With a ground plane, the return path of a signal or supply line is just a
few microns away.

• Use chip-internal decoupling capacitors, and decouple bias voltages to the correct
potential (vdd or vss, or another node, depending on the circuit)!

• Use substrate contacts and guard rings to lower substrate crosstalk but use a quiet
potential for connection; use triple-well if available! Connecting a guard-ring/substrate
contact to a noisy supply is a prime noise injector (usually unwanted).

• Physically separate quiet and noisy circuits (at least by the epi thickness)!
• Reduce circuit noise generation as much as possible (avoid switching circuits if possi-

ble, use constant-current circuits instead, and use series/shunt regulators for supply
isolation).

• Reduce sensitivity of circuits to interference (by using a fully differential design with
high PSRR/CMRR, symmetrical layout parasitics, and good matching)!

24.7 VHDL/Verilog Coding Guide

These recommendations are specifically targeted at Verilog; however, they apply similarly
to VHDL.

139

• Use automatic checkers (linters) to see whether your code contains errors or vulner-
abilities. Commercial or open-source tools allow this, e.g., Icarus Verilog (iverilog
-g2005 -tnull FILE.v) or Verilator (verilator --lint-only -Wall FILE.v).

• Write readable and maintainable code; use speaking variable names, and use a naming
convention for inputs (beginning with i_) and outputs (beginning with o_). Active-
low signals have an _n or _b in their name, like i_reset_n. Use comments to explain
the intention.

• With a synchronous reset reset-related racing conditions are often avoided. If an
asynchronous reset is desirable (which is often the case), ensure the reset signals are
free from race conditions.

• Module-local registers and wires could append _w (for Verilog wire) or _r (for Verilog
reg) to make their function clear. This is not required in SystemVerilog where the
unified type logic should be used.

• Use an assign statement for logic as this often is easier to read than an always
@(*) block. The ternary operator COND ? TRUE : FALSE can help with conditional
assignments and is often a better choice than a (nested) if ... else statement.

• Declare all outputs explicitly with either reg or wire.
• Use local parameter definitions with localparam in a module to make the code easier

to follow. Name parameters in UPPERCASE.
• Take care to reset all registers to a defined state (in simulation and HW).
• Use the rule of “one file per module.” The filename shall match the module declaration.
• Use `default_nettype none at the beginning of a file containing a module definition.

After the module you can use `default_nettype wire. This will add a safety net
against typos in signal names.

• In a logic assign block, use assign @(*) begin ... end instead of spelling out the
signals in the sensitivity list. Forgetting a signal could lead to serious mismatches
between simulation and HW.

• Make your code flexible by making bit widths and other values parameterized using
a localparam or module parameter.

• Be cautious of implicit type conversions and bit-width adaptions; better make explicit
conversions and match bit widths in assignments.

• Use only blocking assignments (=) in always @(*) blocks, and only non-blocking
assignments (<=) in clocked always @(posedge ...) blocks.

24.8 Further Reading

• Good information about drawing schematics, design testbenches, etc: https://circuit-
artists.com

• Sutherland/Mills, Verilog and SystemVerilog Gotchas - 101 Common Coding Erorrs
and How to Avoid Them, Springer, 2010

• B. Razavi, The Analog Mind, column in IEEE Solid-State Circuits Magazine

Source: Article Notebook

Hellen, Edward H. 2003. “Verifying the diode–capacitor circuit voltage decay.” American
Journal of Physics 71 (8): 797–800. https://doi.org/10.1119/1.1578070.

140

https://circuit-artists.com
https://circuit-artists.com
https://iic-jku.github.io/analog-circuit-design/index.qmd.html
https://doi.org/10.1119/1.1578070

Hu, Chenming. 2010. Modern Semiconductor Devices for Integrated Circuits. Pearson.
Jespers, Paul G. A., and Boris Murmann. 2017. Systematic Design of Analog CMOS

Circuits: Using Pre-Computed Lookup Tables. Cambridge University Press.
Middlebrook, R. D. 1975. “Measurement of loop gain in feedback systems.” International

Journal of Electronics 38 (4): 485–512. https://doi.org/10.1080/00207217508920421.
Nagel, Laurence W. 1975. “SPICE2: A Computer Program to Simulate Semiconductor

Circuits.” PhD thesis, EECS Department, University of California, Berkeley. http:
//www2.eecs.berkeley.edu/Pubs/TechRpts/1975/9602.html.

Sheikholeslami, Ali. 2015. “Miller’s Theorem [Circuit Intuitions].” IEEE Solid-State Cir-
cuits Magazine 7 (3): 9–10. https://doi.org/10.1109/mssc.2015.2446457.

Tsividis, Yannis, and Colin McAndrew. 2011. Operation and Modeling of the MOS Tran-
sistor. Oxford University Press.

141

https://doi.org/10.1080/00207217508920421
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1975/9602.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1975/9602.html
https://doi.org/10.1109/mssc.2015.2446457

	Introduction
	IHP's SG13G2 130nm CMOS Technology
	Schematic Entry Using Xschem
	Circuit Simulation Using ngspice
	Integrated IC Design Environment (IIC-OSIC-TOOLS)

	First Steps
	The Metal-Oxide-Semiconductor Field-Effect-Transistor (MOSFET)
	Large-Signal MOSFET Model
	Small-Signal MOSFET Model

	Conclusion

	Transistor Sizing Using gm/ID Methodology
	MOSFET Characterization Testbench
	NMOS Characterization
	PMOS Characterization

	First Circuit: MOSFET Diode
	MOSFET Diode Sizing
	MOSFET Diode Large-Signal Behaviour
	MOSFET Diode Small-Signal Analysis
	MOSFET Diode Stability Analysis
	MOSFET Diode Noise Calculation
	Conclusion

	Current Mirror
	Differential Pair
	Differential Operation of the Diffpair
	Common-Mode Operation of the Diffpair

	A Basic 5-Transistor OTA
	Voltage Buffer with OTA
	Large-Signal Analysis of the OTA
	Small-Signal Analysis of the OTA
	OTA Small-Signal Transfer Function
	OTA Noise

	5T-OTA Sizing

	Sizing for Basic 5T-OTA
	5T-OTA Simulation
	5T-OTA Simulation versus PVT

	CACE Summary for ota-5t
	Plots
	gain_vs_temp
	gain_vs_vin
	gain_vs_vdd
	gain_vs_corner
	bw_vs_temp
	bw_vs_vin
	bw_vs_vdd
	bw_vs_corner
	noise_vs_temp
	noise_vs_vin
	noise_vs_vdd
	noise_vs_corner
	settling_vs_temp
	settling_vs_vin
	settling_vs_vdd
	settling_vs_corner
	PVT Simulation Analysis

	Cascode Stage
	Cascode Output Impedance
	Cascode Input Impedance

	Improved OTA
	Sizing the Improved OTA

	Sizing for Basic (Improved) OTA
	Designing the Improved OTA
	Discussion of the OTA Design

	Simulation of Improved OTA
	Corner Simulation of Improved OTA

	CACE Summary for ota-improved
	Plots
	gain_vs_temp
	gain_vs_vin
	gain_vs_vdd
	gain_vs_corner
	bw_vs_temp
	bw_vs_vin
	bw_vs_vdd
	bw_vs_corner
	noise_vs_temp
	noise_vs_vin
	noise_vs_vdd
	noise_vs_corner
	settling_vs_temp
	settling_vs_vin
	settling_vs_vdd
	settling_vs_corner

	A Fully-Differential OTA
	Biasing the OTA
	An RC-OPAMP Filter
	Summary & Conclusion
	Appendix: Middlebrook's Method
	Appendix: Miller's Theorem
	Appendix: 5T-OTA Small-Signal Output Impedance
	Open-Loop Configuration
	Closed-Loop Configuration

	Appendix: ngspice Cheatsheet
	Commands
	Options
	Convergence Helper

	Appendix: Xschem Cheatsheet
	Appendix: Circuit Designer's Etiquette
	Circuit Designer's Etiquette
	Prolog
	Pins
	Schematics
	Symbols
	Design Robustness
	Rules for Good Mixed-Signal and RF Circuits
	VHDL/Verilog Coding Guide
	Further Reading

